1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-29 21:14:28 +01:00

Refactored Sniffer class and fixed some bugs in HWAddress.

This commit is contained in:
Matias Fontanini
2012-08-10 12:30:41 -03:00
parent e3ca2fd978
commit 87e9c4051e
6 changed files with 89 additions and 344 deletions

View File

@@ -39,12 +39,11 @@ public:
typedef const storage_type* const_iterator;
static const size_t address_size = n;
HWAddress() {
std::fill(begin(), end(), storage_type());
}
HWAddress(const storage_type* ptr) {
std::copy(ptr, ptr + address_size, buffer);
HWAddress(const storage_type* ptr = 0) {
if(ptr)
std::copy(ptr, ptr + address_size, buffer);
else
std::fill(begin(), end(), storage_type());
}
HWAddress(const std::string &address) {
@@ -97,14 +96,20 @@ public:
return address_size;
}
std::string to_string() const {
std::ostringstream oss;
oss << *this;
return oss.str();
}
friend std::ostream &operator<<(std::ostream &os, const HWAddress &addr) {
std::transform(
addr.buffer,
addr.buffer + HWAddress::address_size - 1,
addr.begin(),
addr.end() - 1,
std::ostream_iterator<std::string>(os, ":"),
&HWAddress::to_string
&HWAddress::storage_to_string
);
return os << to_string(addr.buffer[HWAddress::address_size-1]);
return os << storage_to_string(addr.buffer[HWAddress::address_size-1]);
}
template<typename OutputIterator>
@@ -115,7 +120,7 @@ private:
template<typename OutputIterator>
static void convert(const std::string &hw_addr, OutputIterator output);
static std::string to_string(storage_type element) {
static std::string storage_to_string(storage_type element) {
std::ostringstream oss;
oss << std::hex;
if(element < 0x10)

View File

@@ -28,29 +28,10 @@
#include <string>
#include <stdexcept>
#include "pdu.h"
#include "ethernetII.h"
#include "radiotap.h"
namespace Tins {
/**
* \brief Abstract sniffed packet handler.
*
* Base class to handle sniffed packets when using Sniffer::sniff_loop.
* Users should either inherit this class, or use the template class
* SnifferHandler to provide their own handlers.
*/
class AbstractSnifferHandler {
public:
/**
* \brief AbstractSnifferHandler destructor.
*/
virtual ~AbstractSnifferHandler() { }
/**
* \brief Handle a captured PDU.
* \return Should return false if no more sniffing is required.
*/
virtual bool handle(PDU *pdu) = 0;
};
/**
* \brief Sniffer class can be used to sniff packets using filters.
*
@@ -69,7 +50,8 @@ namespace Tins {
* \param promisc bool indicating wether to put the interface in promiscuous mode.
* \param filter A capture filter to compile and use for sniffing sessions.(optional);
*/
Sniffer(const std::string &device, unsigned max_packet_size, bool promisc = false, const std::string &filter = "") throw(std::runtime_error);
Sniffer(const std::string &device, unsigned max_packet_size,
bool promisc = false, const std::string &filter = "");
/**
* \brief Sniffer destructor.
@@ -92,13 +74,24 @@ namespace Tins {
* \brief Starts a sniffing loop, using a callback object for every
* sniffed packet.
*
* Handlers could be user-provided classes which inherit AbstractSnifferHandler,
* or it could be a specific SnifferHandler specialization. This method deletes
* packets after they are handled, therefore the handlers MUST NOT delete them.
* The callback object must implement an operator with the
* following(or compatible) signature:
*
* bool operator()(PDU*);
*
* This operator will be called using the sniffed packets
* as arguments. The callback object <b>must not</b> delete the
* PDU parameter.
*
* Note that the Functor object will be copied using its copy
* constructor, so that object should be some kind of proxy to
* another object which will process the packets(e.g. std::bind).
*
* \param cback_handler The callback handler object which should process packets.
* \param max_packets The maximum amount of packets to sniff. 0 == infinite.
*/
void sniff_loop(AbstractSnifferHandler *cback_handler, uint32_t max_packets = 0);
template<class Functor>
void sniff_loop(const Functor &function, uint32_t max_packets = 0);
/**
* \brief Sets a filter on this sniffer.
@@ -112,10 +105,22 @@ namespace Tins {
*/
void stop_sniff();
private:
template<class Functor>
struct LoopData {
pcap_t *handle;
Functor c_handler;
bool wired;
LoopData(pcap_t *_handle, const Functor _handler,
bool is_wired)
: handle(_handle), c_handler(_handler), wired(is_wired) { }
};
Sniffer(const Sniffer&);
Sniffer &operator=(const Sniffer&);
bool compile_set_filter(const std::string &filter, bpf_program &prog);
template<class Functor>
static void callback_handler(u_char *args, const struct pcap_pkthdr *header, const u_char *packet);
pcap_t *handle;
@@ -123,33 +128,31 @@ namespace Tins {
bpf_program actual_filter;
bool wired;
};
/**
* \brief Concrete implementation of AbstractSnifferHandler.
*
* This class is instantiated using a pointer to the actual handler.
* Every time a packet is sniffed, operator() (PDU*) will be called on
* the given pointer. \sa AbstractSnifferHandler
*/
template<class T> class SnifferHandler : public AbstractSnifferHandler {
public:
/**
* Creates an instance of SnifferHandler.
* \param ptr The pointer to the actual handler.
*/
SnifferHandler(T *ptr) : handler(ptr) { }
/**
* \brief The overriden AbstractSnifferHandler::handle.
* \param pdu The sniffed PDU.
* \return False if no more sniffing is required, otherwise true.
*/
bool handle(PDU *pdu) {
return (*handler)(pdu);
template<class Functor>
void Tins::Sniffer::sniff_loop(const Functor &function, uint32_t max_packets) {
LoopData<Functor> data(handle, function, wired);
pcap_loop(handle, max_packets, &Sniffer::callback_handler<Functor>, (u_char*)&data);
}
template<class Functor>
void Tins::Sniffer::callback_handler(u_char *args, const struct pcap_pkthdr *header, const u_char *packet) {
try {
PDU *pdu = 0;
LoopData<Functor> *data = reinterpret_cast<LoopData<Functor>*>(args);
if(data->wired)
pdu = new Tins::EthernetII((const uint8_t*)packet, header->caplen);
else
pdu = new Tins::RadioTap((const uint8_t*)packet, header->caplen);
bool ret_val = data->c_handler(pdu);
delete pdu;
if(!ret_val)
pcap_breakloop(data->handle);
}
private:
T *handler;
};
catch(...) {
}
}
};
#endif // TINS_SNIFFER_H

View File

@@ -34,6 +34,7 @@
#include "packetsender.h"
#include "ipaddress.h"
#include "hwaddress.h"
#include "network_interface.h"
namespace Tins {
/** \brief Network utils namespace.
@@ -71,24 +72,6 @@ namespace Tins {
*/
std::string ip_to_string(uint32_t ip);
/** \brief Converts a hardware address string into a byte array.
*
* The hardware address must be formatted using the notation 'HH:HH:HH:HH:HH:HH'.
* Where H is a hexadecimal character(0-9, a-f).
*
* \param hw_addr The harware address string.
* \param array The output buffer. It must be at least 6 bytes long.
*/
bool hwaddr_to_byte(const std::string &hw_addr, uint8_t *array);
/** \brief Converts a byte array representing a hardware address
* into a string.
*
* The input buffer must be at least 6 bytes long.
* \param array The input buffer.
*/
std::string hwaddr_to_string(const uint8_t *array);
/** \brief Resolves a domain name and returns its corresponding ip address.
*
* If an ip address is given, its integer representation is returned.
@@ -96,7 +79,7 @@ namespace Tins {
*
* \param to_resolve The domain name/ip address to resolve.
*/
uint32_t resolve_ip(const std::string &to_resolve) throw (std::runtime_error);
uint32_t resolve_ip(const std::string &to_resolve);
/**
* \brief Pings an ip address.
@@ -113,7 +96,7 @@ namespace Tins {
* \return PDU * containing either 0 if no response was received,
* or the ICMP response otherwise.
*/
PDU *ping_address(uint32_t ip, PacketSender *sender, IPv4Address ip_src = 0);
PDU *ping_address(IPv4Address ip, PacketSender *sender, IPv4Address ip_src = 0);
/** \brief Resolves the hardware address for a given ip.
*
@@ -124,7 +107,7 @@ namespace Tins {
* \return Returns true if the hardware address was resolved successfully,
* false otherwise.
*/
bool resolve_hwaddr(const std::string &iface, IPv4Address ip,
bool resolve_hwaddr(const NetworkInterface &iface, IPv4Address ip,
HWAddress<6> *address, PacketSender *sender);
/** \brief List all network interfaces.
@@ -134,63 +117,6 @@ namespace Tins {
* interface for Utils::interface_ip, Utils::interface_hwaddr, etc.
*/
std::set<std::string> network_interfaces();
/**
* \brief Lookup the ip address of the given interface.
*
* If the lookup fails, false will be returned, true otherwise.
* \param iface The interface from which to extract the ip address.
* \param ip The ip address found will be returned in this param.
*
* \return bool indicating wether the operation was successfull.
*/
bool interface_ip(const std::string &iface, IPv4Address &ip);
/**
* \brief Lookup the ip/hw/netmask/broadcast address of the
* given interface.
*
* If the lookup fails, false will be returned, true otherwise.
* \param iface The interface from which to extract the ip address.
* \param info The InterfaceInfo in which the information will
* be stored.
*
* \return bool indicating wether the operation was successfull.
*/
bool interface_info(const std::string &iface, InterfaceInfo &info);
/**
* \brief Lookup the hardware address of the given interface.
*
* If the lookup fails, false will be returned, true otherwise.
* \param iface The interface from which to extract the hardware address.
* \param buffer The hw address will be stored in this buffer. It must
* be at least 6 bytes long.
*
* \return bool indicating wether the operation was successfull.
*/
bool interface_hwaddr(const std::string &iface, HWAddress<6> *address);
/**
* \brief Lookup the interface identifier.
*
* If the lookup fails, false will be returned, true otherwise.
* \param iface The interface from which to extract the identifier.
* \param id The interface id will be returned in this parameter.
*
* \return bool indicating wether the operation was successfull.
*/
bool interface_id(const std::string &iface, uint32_t &id);
/**
* \brief Finds the gateway interface matching the given ip.
*
* This function find the interface which would be the gateway
* when sending a packet to the given ip.
* \param ip The ip of the interface we are looking for.
* \return The interface's name.
*/
std::string interface_from_ip(IPv4Address ip);
/**
* \brief Finds the gateway's IP address for the given IP

View File

@@ -21,26 +21,13 @@
#include "sniffer.h"
#include "ethernetII.h"
#include "radiotap.h"
using namespace std;
/** \cond */
struct LoopData {
pcap_t *handle;
Tins::AbstractSnifferHandler *c_handler;
bool wired;
LoopData(pcap_t *_handle, Tins::AbstractSnifferHandler *_handler, bool is_wired) : handle(_handle), c_handler(_handler), wired(is_wired) { }
};
/** \endcond */
Tins::Sniffer::Sniffer(const string &device, unsigned max_packet_size, bool promisc, const string &filter) throw(std::runtime_error) {
Tins::Sniffer::Sniffer(const string &device, unsigned max_packet_size,
bool promisc, const string &filter)
{
char error[PCAP_ERRBUF_SIZE];
if (pcap_lookupnet(device.c_str(), &ip, &mask, error) == -1) {
ip = 0;
@@ -90,33 +77,9 @@ void Tins::Sniffer::stop_sniff() {
pcap_breakloop(handle);
}
void Tins::Sniffer::sniff_loop(AbstractSnifferHandler *cback_handler, uint32_t max_packets) {
LoopData data(handle, cback_handler, wired);
pcap_loop(handle, max_packets, Sniffer::callback_handler, (u_char*)&data);
}
bool Tins::Sniffer::set_filter(const std::string &filter) {
if(actual_filter.bf_insns)
pcap_freecode(&actual_filter);
return compile_set_filter(filter, actual_filter);
}
// Static
void Tins::Sniffer::callback_handler(u_char *args, const struct pcap_pkthdr *header, const u_char *packet) {
try {
PDU *pdu = 0;
LoopData *data = reinterpret_cast<LoopData*>(args);
if(data->wired)
pdu = new EthernetII((const uint8_t*)packet, header->caplen);
else
pdu = new RadioTap((const uint8_t*)packet, header->caplen);
bool ret_val = data->c_handler->handle(pdu);
delete pdu;
if(!ret_val)
pcap_breakloop(data->handle);
}
catch(...) {
}
}

View File

@@ -66,49 +66,6 @@ struct IPv4Collector {
}
};
/** \cond */
struct HWAddressCollector {
Tins::HWAddress<6> *result;
bool found;
const char *iface;
HWAddressCollector(Tins::HWAddress<6> *res, const char *interface)
: result(res), found(false), iface(interface) { }
bool operator() (struct ifaddrs *addr) {
if(!found && addr->ifa_addr->sa_family == AF_PACKET && !strcmp(addr->ifa_name, iface)) {
*result = ((struct sockaddr_ll*)addr->ifa_addr)->sll_addr;
found = true;
}
return found;
}
};
/** \cond */
struct InterfaceInfoCollector {
Tins::Utils::InterfaceInfo *info;
const char *iface;
bool found;
InterfaceInfoCollector(Tins::Utils::InterfaceInfo *res, const char *interface) :
info(res), iface(interface), found(false) { }
bool operator() (struct ifaddrs *addr) {
if(addr->ifa_addr->sa_family == AF_PACKET && !strcmp(addr->ifa_name, iface))
memcpy(info->hw_addr, ((struct sockaddr_ll*)addr->ifa_addr)->sll_addr, sizeof(info->hw_addr));
else if(addr->ifa_addr->sa_family == AF_INET && !strcmp(addr->ifa_name, iface)) {
info->ip_addr = ((struct sockaddr_in *)addr->ifa_addr)->sin_addr.s_addr;
info->netmask = ((struct sockaddr_in *)addr->ifa_netmask)->sin_addr.s_addr;
if((addr->ifa_flags & (IFF_BROADCAST | IFF_POINTOPOINT)))
info->bcast_addr = ((struct sockaddr_in *)addr->ifa_ifu.ifu_broadaddr)->sin_addr.s_addr;
else
info->bcast_addr = 0;
found = true;
}
return found;
}
};
bool Tins::Utils::Internals::from_hex(const string &str, uint32_t &result) {
unsigned i(0);
result = 0;
@@ -170,72 +127,33 @@ string Tins::Utils::ip_to_string(uint32_t ip) {
return oss.str();
}
bool Tins::Utils::hwaddr_to_byte(const std::string &hw_addr, uint8_t *array) {
if(hw_addr.size() != 17)
return false;
unsigned i(0), arr_index(0);
uint8_t tmp;
while(i < hw_addr.size()) {
unsigned end=i+2;
tmp = 0;
while(i < end) {
if(hw_addr[i] >= 'a' && hw_addr[i] <= 'f')
tmp = (tmp << 4) | (hw_addr[i] - 'a' + 10);
else if(hw_addr[i] >= '0' && hw_addr[i] <= '9')
tmp = (tmp << 4) | (hw_addr[i] - '0');
else
return false;
i++;
}
array[arr_index++] = tmp;
if(i < hw_addr.size()) {
if(hw_addr[i] == ':')
i++;
else
return false;
}
}
return true;
}
string Tins::Utils::hwaddr_to_string(const uint8_t *array) {
ostringstream oss;
oss << hex;
for(unsigned i(0); i < 6; ++i) {
if(array[i] < 0x10)
oss << '0';
oss << (unsigned)array[i];
if(i < 5)
oss << ':';
}
return oss.str();
}
uint32_t Tins::Utils::resolve_ip(const string &to_resolve) throw (std::runtime_error) {
uint32_t Tins::Utils::resolve_ip(const string &to_resolve) {
struct hostent *data = gethostbyname(to_resolve.c_str());
if(!data)
throw std::runtime_error("Could not resolve IP");
return Utils::net_to_host_l(((struct in_addr**)data->h_addr_list)[0]->s_addr);
}
Tins::PDU *Tins::Utils::ping_address(uint32_t ip, PacketSender *sender, IPv4Address ip_src) {
Tins::PDU *Tins::Utils::ping_address(IPv4Address ip, PacketSender *sender, IPv4Address ip_src) {
ICMP *icmp = new ICMP(ICMP::ECHO_REQUEST);
if(!ip_src) {
std::string iface(Utils::interface_from_ip(ip));
if(!iface.size() || !Utils::interface_ip(iface, ip_src))
try {
NetworkInterface iface(ip);
ip_src = iface.addresses().ip_addr;
} catch(...) {
return 0;
}
}
IP ip_packet(ip, ip_src, icmp);
return sender->send_recv(&ip_packet);
}
bool Tins::Utils::resolve_hwaddr(const string &iface, IPv4Address ip,
HWAddress<6> *address, PacketSender *sender) {
bool Tins::Utils::resolve_hwaddr(const NetworkInterface &iface, IPv4Address ip,
HWAddress<6> *address, PacketSender *sender)
{
IPv4Address my_ip;
HWAddress<6> my_hw;
if(!interface_ip(iface, my_ip) || !interface_hwaddr(iface, &my_hw))
return false;
PDU *packet = ARP::make_arp_request(iface, ip, my_ip, my_hw);
NetworkInterface::Info info(iface.addresses());
PDU *packet = ARP::make_arp_request(iface, ip, info.ip_addr, info.hw_addr);
PDU *response = sender->send_recv(packet);
delete packet;
if(response) {
@@ -249,19 +167,6 @@ bool Tins::Utils::resolve_hwaddr(const string &iface, IPv4Address ip,
return false;
}
string Tins::Utils::interface_from_ip(IPv4Address ip) {
if(ip == 0x7f000001)
return "lo";
std::vector<RouteEntry> entries;
uint32_t ip_int = ip;
route_entries(std::back_inserter(entries));
for(std::vector<RouteEntry>::const_iterator it(entries.begin()); it != entries.end(); ++it) {
if((ip_int & it->mask) == it->destination)
return it->interface;
}
return "";
}
bool Tins::Utils::gateway_from_ip(IPv4Address ip, IPv4Address &gw_addr) {
typedef std::vector<RouteEntry> entries_type;
entries_type entries;
@@ -282,33 +187,6 @@ set<string> Tins::Utils::network_interfaces() {
return collector.ifaces;
}
bool Tins::Utils::interface_ip(const string &iface, IPv4Address &ip) {
IPv4Collector collector(iface.c_str());
generic_iface_loop(collector);
ip = Utils::net_to_host_l(collector.ip);
return collector.found;
}
bool Tins::Utils::interface_hwaddr(const string &iface, HWAddress<6> *address) {
HWAddressCollector collector(address, iface.c_str());
generic_iface_loop(collector);
return collector.found;
}
bool Tins::Utils::interface_info(const string &iface, InterfaceInfo &info) {
InterfaceInfoCollector collector(&info, iface.c_str());
generic_iface_loop(collector);
info.ip_addr = net_to_host_l(info.ip_addr);
info.netmask = net_to_host_l(info.netmask);
info.bcast_addr = net_to_host_l(info.bcast_addr);
return collector.found;
}
bool Tins::Utils::interface_id(const string &iface, uint32_t &id) {
id = if_nametoindex(iface.c_str());
return (((int32_t)id) != -1);
}
uint16_t Tins::Utils::channel_to_mhz(uint16_t channel) {
return 2407 + (channel * 5);
}

View File

@@ -80,25 +80,6 @@ TEST_F(UtilsTest, IpToString) {
}
TEST_F(UtilsTest, HwaddrToByte) {
uint8_t result_buf[6];
Utils::hwaddr_to_byte("00:00:00:00:00:00", result_buf);
EXPECT_TRUE(memcmp(result_buf, zero_hw_addr, 6) == 0);
Utils::hwaddr_to_byte("ff:ff:ff:ff:ff:ff", result_buf);
EXPECT_TRUE(memcmp(result_buf, full_hw_addr, 6) == 0);
Utils::hwaddr_to_byte("01:02:03:04:05:06", result_buf);
EXPECT_TRUE(memcmp(result_buf, mix_hw_addr, 6) == 0);
}
TEST_F(UtilsTest, HwaddrToString) {
EXPECT_EQ(Utils::hwaddr_to_string(zero_hw_addr), "00:00:00:00:00:00");
EXPECT_EQ(Utils::hwaddr_to_string(full_hw_addr), "ff:ff:ff:ff:ff:ff");
EXPECT_EQ(Utils::hwaddr_to_string(mix_hw_addr), "01:02:03:04:05:06");
}
TEST_F(UtilsTest, ResolveIp) {
uint32_t localhost_ip = Utils::ip_to_int("127.0.0.1");
@@ -108,17 +89,6 @@ TEST_F(UtilsTest, ResolveIp) {
}
TEST_F(UtilsTest, InterfaceIp) {
IPv4Address ip;
IPv4Address localhost_ip = Utils::ip_to_int("127.0.0.1");
#ifndef WIN32
ASSERT_TRUE(Utils::interface_ip("lo", ip));
EXPECT_EQ(ip, localhost_ip);
#endif
EXPECT_FALSE(Utils::interface_ip("asdfghgfdsa", ip));
}
TEST_F(UtilsTest, NetToHostS) {
uint16_t a = 0x01FE;