1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-23 02:35:57 +01:00

Split pdu_option.h into a source file as well

This commit is contained in:
Matias Fontanini
2017-05-13 10:22:24 -07:00
parent b47dc3f77c
commit 3c2f40ec02
5 changed files with 394 additions and 236 deletions

View File

@@ -53,6 +53,11 @@ struct enable_if<false, T> {
};
template <typename T>
struct type_to_type {
typedef T type;
};
template<typename T>
struct is_unsigned_integral {
static const bool value = false;

View File

@@ -31,18 +31,19 @@
#define TINS_PDU_OPTION_H
#include <vector>
#include <iterator>
#include <cstring>
#include <string>
#include <cstring>
#include <stdint.h>
#include "exceptions.h"
#include "endianness.h"
#include "ip_address.h"
#include "ipv6_address.h"
#include "hw_address.h"
#include "detail/type_traits.h"
namespace Tins {
class IPv4Address;
class IPv6Address;
template <size_t n>
class HWAddress;
/**
* \cond
*/
@@ -50,251 +51,125 @@ template <typename OptionType, typename PDUType>
class PDUOption;
namespace Internals {
template <typename T, typename X, typename PDUType>
T convert_to_integral(const PDUOption<X, PDUType> & opt) {
if (opt.data_size() != sizeof(T)) {
throw malformed_option();
}
T data = *(T*)opt.data_ptr();
if (PDUType::endianness == PDUType::BE) {
data = Endian::be_to_host(data);
}
else {
data = Endian::le_to_host(data);
}
return data;
}
namespace Converters {
uint8_t convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<uint8_t>);
uint16_t convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<uint16_t>);
uint32_t convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<uint32_t>);
uint64_t convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<uint64_t>);
HWAddress<6> convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian, type_to_type<HWAddress<6> >);
IPv4Address convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian, type_to_type<IPv4Address>);
IPv6Address convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<IPv6Address>);
std::string convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian, type_to_type<std::string>);
std::vector<float> convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian, type_to_type<std::vector<float> >);
std::vector<uint8_t> convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian, type_to_type<std::vector<uint8_t> >);
std::vector<uint16_t> convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian,
type_to_type<std::vector<uint16_t> >);
std::vector<uint32_t> convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian,
type_to_type<std::vector<uint32_t> >);
std::vector<IPv4Address> convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian,
type_to_type<std::vector<IPv4Address> >);
std::vector<IPv6Address> convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian,
type_to_type<std::vector<IPv6Address> >);
std::vector<std::pair<uint8_t, uint8_t> > convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian,
type_to_type<std::vector<std::pair<uint8_t, uint8_t> > >);
std::pair<uint8_t, uint8_t> convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian,
type_to_type<std::pair<uint8_t, uint8_t> >);
std::pair<uint16_t, uint32_t> convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian,
type_to_type<std::pair<uint16_t, uint32_t> >);
std::pair<uint32_t, uint32_t> convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian,
type_to_type<std::pair<uint32_t, uint32_t> >);
} // Converters
template <typename T, typename = void>
struct converter {
template <typename X, typename PDUType>
static T convert(const PDUOption<X, PDUType>& opt) {
template <typename T, typename X, typename PDUType>
static T do_convert(const PDUOption<X, PDUType>& opt, type_to_type<T>) {
return T::from_option(opt);
}
};
template <>
struct converter<uint8_t> {
template <typename X, typename PDUType>
static uint8_t convert(const PDUOption<X, PDUType>& opt) {
if (opt.data_size() != 1) {
throw malformed_option();
}
return* opt.data_ptr();
}
};
template<>
struct converter<uint16_t> {
template<typename X, typename PDUType>
static uint16_t convert(const PDUOption<X, PDUType>& opt) {
return convert_to_integral<uint16_t>(opt);
}
};
template<>
struct converter<uint32_t> {
template<typename X, typename PDUType>
static uint32_t convert(const PDUOption<X, PDUType>& opt) {
return convert_to_integral<uint32_t>(opt);
}
};
template<>
struct converter<uint64_t> {
template<typename X, typename PDUType>
static uint64_t convert(const PDUOption<X, PDUType>& opt) {
return convert_to_integral<uint64_t>(opt);
}
};
template<size_t n>
struct converter<HWAddress<n> > {
template<typename X, typename PDUType>
static HWAddress<n> convert(const PDUOption<X, PDUType>& opt) {
if (opt.data_size() != n) {
throw malformed_option();
}
return HWAddress<n>(opt.data_ptr());
template <typename U, typename X, typename PDUType>
static U do_convert(const PDUOption<X, PDUType>& opt, type_to_type<uint8_t> type) {
return Converters::convert(opt.data_ptr(), opt.data_size(),
PDUType::endianness, type);
}
};
template<>
struct converter<IPv4Address> {
template<typename X, typename PDUType>
static IPv4Address convert(const PDUOption<X, PDUType>& opt) {
if (opt.data_size() != sizeof(uint32_t)) {
throw malformed_option();
}
const uint32_t* ptr = (const uint32_t*)opt.data_ptr();
if (PDUType::endianness == PDUType::BE) {
return IPv4Address(*ptr);
}
else {
return IPv4Address(Endian::change_endian(*ptr));
}
template <typename U, typename X, typename PDUType>
static U do_convert(const PDUOption<X, PDUType>& opt, type_to_type<uint16_t> type) {
return Converters::convert(opt.data_ptr(), opt.data_size(),
PDUType::endianness, type);
}
};
template<>
struct converter<IPv6Address> {
template<typename X, typename PDUType>
static IPv6Address convert(const PDUOption<X, PDUType>& opt) {
if (opt.data_size() != IPv6Address::address_size) {
throw malformed_option();
}
return IPv6Address(opt.data_ptr());
template <typename U, typename X, typename PDUType>
static U do_convert(const PDUOption<X, PDUType>& opt, type_to_type<uint32_t> type) {
return Converters::convert(opt.data_ptr(), opt.data_size(),
PDUType::endianness, type);
}
};
template<>
struct converter<std::string> {
template<typename X, typename PDUType>
static std::string convert(const PDUOption<X, PDUType>& opt) {
return std::string(
opt.data_ptr(),
opt.data_ptr() + opt.data_size()
);
template <typename U, typename X, typename PDUType>
static U do_convert(const PDUOption<X, PDUType>& opt, type_to_type<uint64_t> type) {
return Converters::convert(opt.data_ptr(), opt.data_size(),
PDUType::endianness, type);
}
};
template<>
struct converter<std::vector<float> > {
template<typename X, typename PDUType>
static std::vector<float> convert(const PDUOption<X, PDUType>& opt) {
std::vector<float> output;
const uint8_t* ptr = opt.data_ptr(), *end = ptr + opt.data_size();
while (ptr != end) {
output.push_back(float(*(ptr++) & 0x7f) / 2);
}
return output;
template <typename U, typename X, typename PDUType>
static U do_convert(const PDUOption<X, PDUType>& opt, type_to_type<HWAddress<6> > type) {
return Converters::convert(opt.data_ptr(), opt.data_size(),
PDUType::endianness, type);
}
};
template<typename T>
struct converter<std::vector<T>, typename enable_if<is_unsigned_integral<T>::value>::type> {
template<typename X, typename PDUType>
static std::vector<T> convert(const PDUOption<X, PDUType>& opt) {
if (opt.data_size() % sizeof(T) != 0) {
throw malformed_option();
}
const T* ptr = (const T*)opt.data_ptr();
const T* end = (const T*)(opt.data_ptr() + opt.data_size());
std::vector<T> output(std::distance(ptr, end));
typename std::vector<T>::iterator it = output.begin();
while (ptr < end) {
if (PDUType::endianness == PDUType::BE) {
*it++ = Endian::be_to_host(*ptr++);
}
else {
*it++ = Endian::le_to_host(*ptr++);
}
}
return output;
template <typename U, typename X, typename PDUType>
static U do_convert(const PDUOption<X, PDUType>& opt, type_to_type<IPv4Address> type) {
return Converters::convert(opt.data_ptr(), opt.data_size(),
PDUType::endianness, type);
}
};
template<typename T, typename U>
struct converter<
std::vector<std::pair<T, U> >,
typename enable_if<
is_unsigned_integral<T>::value && is_unsigned_integral<U>::value
>::type
> {
template<typename X, typename PDUType>
static std::vector<std::pair<T, U> > convert(const PDUOption<X, PDUType>& opt) {
if (opt.data_size() % (sizeof(T) + sizeof(U)) != 0) {
throw malformed_option();
}
const uint8_t* ptr = opt.data_ptr(), *end = ptr + opt.data_size();
std::vector<std::pair<T, U> > output;
while (ptr < end) {
std::pair<T, U> data;
data.first = *(const T*)ptr;
ptr += sizeof(T);
data.second = *(const U*)ptr;
ptr += sizeof(U);
if (PDUType::endianness == PDUType::BE) {
data.first = Endian::be_to_host(data.first);
data.second = Endian::be_to_host(data.second);
}
else {
data.first = Endian::le_to_host(data.first);
data.second = Endian::le_to_host(data.second);
}
output.push_back(data);
}
return output;
template <typename U, typename X, typename PDUType>
static U do_convert(const PDUOption<X, PDUType>& opt, type_to_type<IPv6Address> type) {
return Converters::convert(opt.data_ptr(), opt.data_size(),
PDUType::endianness, type);
}
};
template<>
struct converter<std::vector<IPv4Address> > {
template<typename X, typename PDUType>
static std::vector<IPv4Address> convert(const PDUOption<X, PDUType>& opt) {
if (opt.data_size() % 4 != 0) {
throw malformed_option();
}
const uint32_t* ptr = (const uint32_t*)opt.data_ptr();
const uint32_t* end = (const uint32_t*)(opt.data_ptr() + opt.data_size());
std::vector<IPv4Address> output(std::distance(ptr, end));
std::vector<IPv4Address>::iterator it = output.begin();
while (ptr < end) {
if (PDUType::endianness == PDUType::BE) {
*it++ = IPv4Address(*ptr++);
}
else {
*it++ = IPv4Address(Endian::change_endian(*ptr++));
}
}
return output;
template <typename U, typename X, typename PDUType>
static U do_convert(const PDUOption<X, PDUType>& opt,
type_to_type<std::string> type) {
return Converters::convert(opt.data_ptr(), opt.data_size(),
PDUType::endianness, type);
}
};
template<>
struct converter<std::vector<IPv6Address> > {
template<typename X, typename PDUType>
static std::vector<IPv6Address> convert(const PDUOption<X, PDUType>& opt) {
if (opt.data_size() % IPv6Address::address_size != 0) {
throw malformed_option();
}
const uint8_t* ptr = opt.data_ptr(), *end = opt.data_ptr() + opt.data_size();
std::vector<IPv6Address> output;
while (ptr < end) {
output.push_back(IPv6Address(ptr));
ptr += IPv6Address::address_size;
}
return output;
template <typename U, typename X, typename PDUType, typename Z>
static U do_convert(const PDUOption<X, PDUType>& opt,
type_to_type<std::vector<Z> > type) {
return Converters::convert(opt.data_ptr(), opt.data_size(),
PDUType::endianness, type);
}
};
template<typename T, typename U>
struct converter<
std::pair<T, U>,
typename enable_if<
is_unsigned_integral<T>::value && is_unsigned_integral<U>::value
>::type
> {
template<typename X, typename PDUType>
static std::pair<T, U> convert(const PDUOption<X, PDUType>& opt) {
if (opt.data_size() != sizeof(T) + sizeof(U)) {
throw malformed_option();
}
std::pair<T, U> output;
std::memcpy(&output.first, opt.data_ptr(), sizeof(T));
std::memcpy(&output.second, opt.data_ptr() + sizeof(T), sizeof(U));
if (PDUType::endianness == PDUType::BE) {
output.first = Endian::be_to_host(output.first);
output.second = Endian::be_to_host(output.second);
}
else {
output.first = Endian::le_to_host(output.first);
output.second = Endian::le_to_host(output.second);
}
return output;
template <typename U, typename X, typename PDUType, typename Z, typename W>
static U do_convert(const PDUOption<X, PDUType>& opt,
type_to_type<std::pair<Z, W> > type) {
return Converters::convert(opt.data_ptr(), opt.data_size(),
PDUType::endianness, type);
}
template <typename T, typename X, typename PDUType>
static T convert(const PDUOption<X, PDUType>& opt) {
return do_convert<T>(opt, type_to_type<T>());
}
};
}
@@ -504,7 +379,7 @@ public:
*/
template<typename T>
T to() const {
return Internals::converter<T>::convert(*this);
return Internals::converter::convert<T>(*this);
}
private:
template<typename ForwardIterator>

View File

@@ -52,6 +52,7 @@ set(SOURCES
radiotap.cpp
address_range.cpp
pdu_iterator.cpp
pdu_option.cpp
rawpdu.cpp
rsn_information.cpp
sll.cpp

276
src/pdu_option.cpp Normal file
View File

@@ -0,0 +1,276 @@
/*
* Copyright (c) 2017, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <algorithm>
#include "pdu.h"
#include "ip_address.h"
#include "ipv6_address.h"
#include "hw_address.h"
#include "endianness.h"
#include "pdu_option.h"
using std::vector;
using std::pair;
using std::string;
using std::memcpy;
using std::distance;
namespace Tins {
namespace Internals {
namespace Converters {
template <typename T>
T convert_to_integral(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian) {
if (data_size != sizeof(T)) {
throw malformed_option();
}
T data = *(T*)ptr;
if (endian == PDU::BE) {
data = Endian::be_to_host(data);
}
else {
data = Endian::le_to_host(data);
}
return data;
}
template<typename T>
vector<T> convert_vector(const uint8_t* u8_ptr, uint32_t data_size, PDU::endian_type endian) {
if (data_size % sizeof(T) != 0) {
throw malformed_option();
}
const T* ptr = (const T*)u8_ptr;
const T* end = (const T*)(ptr + data_size / sizeof(T));
vector<T> output(distance(ptr, end));
typename vector<T>::iterator it = output.begin();
while (ptr < end) {
if (endian == PDU::BE) {
*it++ = Endian::be_to_host(*ptr++);
}
else {
*it++ = Endian::le_to_host(*ptr++);
}
}
return output;
}
template<typename T, typename U,
typename = typename enable_if<is_unsigned_integral<T>::value &&
is_unsigned_integral<U>::value>::type>
vector<std::pair<T, U> > convert_vector(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian) {
if (data_size % (sizeof(T) + sizeof(U)) != 0) {
throw malformed_option();
}
const uint8_t* end = ptr + data_size;
std::vector<std::pair<T, U> > output;
while (ptr < end) {
pair<T, U> data;
data.first = *(const T*)ptr;
ptr += sizeof(T);
data.second = *(const U*)ptr;
ptr += sizeof(U);
if (endian == PDU::BE) {
data.first = Endian::be_to_host(data.first);
data.second = Endian::be_to_host(data.second);
}
else {
data.first = Endian::le_to_host(data.first);
data.second = Endian::le_to_host(data.second);
}
output.push_back(data);
}
return output;
}
template<typename T, typename U,
typename = typename enable_if<is_unsigned_integral<T>::value &&
is_unsigned_integral<U>::value>::type>
std::pair<T, U> convert_pair(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian) {
if (data_size != sizeof(T) + sizeof(U)) {
throw malformed_option();
}
pair<T, U> output;
memcpy(&output.first, ptr, sizeof(T));
memcpy(&output.second, ptr + sizeof(T), sizeof(U));
if (endian == PDU::BE) {
output.first = Endian::be_to_host(output.first);
output.second = Endian::be_to_host(output.second);
}
else {
output.first = Endian::le_to_host(output.first);
output.second = Endian::le_to_host(output.second);
}
return output;
}
uint8_t convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type, type_to_type<uint8_t>) {
if (data_size != 1) {
throw malformed_option();
}
return *ptr;
}
uint16_t convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<uint16_t>) {
return convert_to_integral<uint16_t>(ptr, data_size, endian);
}
uint32_t convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<uint32_t>) {
return convert_to_integral<uint32_t>(ptr, data_size, endian);
}
uint64_t convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian, type_to_type<uint64_t>) {
return convert_to_integral<uint64_t>(ptr, data_size, endian);
}
HWAddress<6> convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type,
type_to_type<HWAddress<6> >) {
if (data_size != 6) {
throw malformed_option();
}
return HWAddress<6>(ptr);
}
IPv4Address convert(const uint8_t* u8_ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<IPv4Address>) {
if (data_size != sizeof(uint32_t)) {
throw malformed_option();
}
const uint32_t* ptr = (const uint32_t*)u8_ptr;
if (endian == PDU::BE) {
return IPv4Address(*ptr);
}
else {
return IPv4Address(Endian::change_endian(*ptr));
}
}
IPv6Address convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type,
type_to_type<IPv6Address>) {
if (data_size != IPv6Address::address_size) {
throw malformed_option();
}
return IPv6Address(ptr);
}
string convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type,
type_to_type<string>) {
return string(ptr, ptr + data_size);
}
vector<float> convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type,
type_to_type<vector<float> >) {
vector<float> output;
const uint8_t* end = ptr + data_size;
while (ptr != end) {
output.push_back(float(*(ptr++) & 0x7f) / 2);
}
return output;
}
vector<uint8_t> convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<vector<uint8_t> >) {
return convert_vector<uint8_t>(ptr, data_size, endian);
}
vector<uint16_t> convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<vector<uint16_t> >) {
return convert_vector<uint16_t>(ptr, data_size, endian);
}
vector<uint32_t> convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<vector<uint32_t> >) {
return convert_vector<uint32_t>(ptr, data_size, endian);
}
vector<IPv4Address> convert(const uint8_t* u8_ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<vector<IPv4Address> >) {
if (data_size % 4 != 0) {
throw malformed_option();
}
const uint32_t* ptr = (const uint32_t*)u8_ptr;
const uint32_t* end = (const uint32_t*)(ptr + data_size / sizeof(uint32_t));
vector<IPv4Address> output(distance(ptr, end));
vector<IPv4Address>::iterator it = output.begin();
while (ptr < end) {
if (endian == PDU::BE) {
*it++ = IPv4Address(*ptr++);
}
else {
*it++ = IPv4Address(Endian::change_endian(*ptr++));
}
}
return output;
}
vector<IPv6Address> convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type,
type_to_type<vector<IPv6Address> >) {
if (data_size % IPv6Address::address_size != 0) {
throw malformed_option();
}
const uint8_t* end = ptr + data_size;
vector<IPv6Address> output;
while (ptr < end) {
output.push_back(IPv6Address(ptr));
ptr += IPv6Address::address_size;
}
return output;
}
vector<pair<uint8_t, uint8_t>> convert(const uint8_t* ptr, uint32_t data_size,
PDU::endian_type endian,
type_to_type<vector<pair<uint8_t, uint8_t> > >) {
return convert_vector<uint8_t, uint8_t>(ptr, data_size, endian);
}
pair<uint8_t, uint8_t> convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<pair<uint8_t, uint8_t> >) {
return convert_pair<uint8_t, uint8_t>(ptr, data_size, endian);
}
pair<uint16_t, uint32_t> convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<pair<uint16_t, uint32_t> >) {
return convert_pair<uint16_t, uint32_t>(ptr, data_size, endian);
}
pair<uint32_t, uint32_t> convert(const uint8_t* ptr, uint32_t data_size, PDU::endian_type endian,
type_to_type<pair<uint32_t, uint32_t> >) {
return convert_pair<uint32_t, uint32_t>(ptr, data_size, endian);
}
} // Converters
} // Internals
} // Tins

View File

@@ -33,6 +33,7 @@
#include <cstring>
#include <stdexcept>
#include "exceptions.h"
#include "pdu.h"
#include "pdu_option.h"
#include "memory_helpers.h"
#include "dot11/dot11_base.h"