get rid of lkmc package, move userland and kernel-modules to top

Rationale: we already had a non buildroot build system,
maintaining both will be hard, and having short paths is more awesome.
This commit is contained in:
Ciro Santilli 六四事件 法轮功
2018-10-25 00:00:01 +00:00
parent 98d2c83317
commit ca231b82f6
99 changed files with 184 additions and 181 deletions

49
userland/Makefile Normal file
View File

@@ -0,0 +1,49 @@
.PHONY: all clean mkdir
CFLAGS_EXTRA = -fopenmp -std=c99
CXXFLAGS_EXTRA = -std=c++17
CCFLAGS_EXTRA = -Wall -Werror -Wextra
IN_EXT_C = .c
IN_EXT_CXX = .cpp
LIBS = -lm
OUT_EXT = .out
OUT_DIR = .
OUTS := $(foreach IN_EXT,$(IN_EXT_C) $(IN_EXT_CXX),$(addsuffix $(OUT_EXT), $(basename $(wildcard *$(IN_EXT)))))
ifeq ($(HAS_EIGEN),y)
CXXFLAGS_EXTRA += -I$(STAGING_DIR)/usr/include/eigen3
# TODO: was failing with:
# fatal error: Eigen/Dense: No such file or directory as of
# 975ce0723ee3fa1fea1766e6683e2f3acb8558d6
# http://lists.busybox.net/pipermail/buildroot/2018-June/222914.html
#CXXFLAGS_EXTRA += $(shell $(PKG_CONFIG) --cflags eigen3)
else
OUTS := $(filter-out eigen_%$(OUT_EXT),$(OUTS))
endif
ifeq ($(HAS_LIBDRM),y)
LIBS += $(shell $(PKG_CONFIG) --libs libdrm)
CFLAGS_EXTRA += $(shell $(PKG_CONFIG) --cflags libdrm)
else
OUTS := $(filter-out libdrm_%$(OUT_EXT),$(OUTS))
endif
ifeq ($(HAS_OPENBLAS),y)
LIBS += $(shell $(PKG_CONFIG) --libs openblas)
CFLAGS_EXTRA += $(shell $(PKG_CONFIG) --cflags openblas)
else
OUTS := $(filter-out openblas_%$(OUT_EXT),$(OUTS))
endif
OUTS := $(addprefix $(OUT_DIR)/,$(OUTS))
all: mkdir $(OUTS)
$(OUT_DIR)/%$(OUT_EXT): %$(IN_EXT_C)
$(CC) $(CFLAGS) $(CCFLAGS) $(CFLAGS_EXTRA) -o '$@' '$<' $(LIBS)
$(OUT_DIR)/%$(OUT_EXT): %$(IN_EXT_CXX)
$(CXX) $(CXXFLAGS) $(CCFLAGS) $(CXXFLAGS_EXTRA) -o '$@' '$<' $(LIBS)
clean:
rm -f *'$(OUT_EXT)'
mkdir:
mkdir -p '$(OUT_DIR)'

View File

@@ -0,0 +1,46 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#anonymous-inode */
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h> /* sleep */
#include "../include/anonymous_inode.h"
int main(int argc, char **argv)
{
char buf[1024];
int fd_ioctl, fd_ioctl_anon, ret;
size_t i, nreads;
if (argc < 2) {
puts("Usage: ./prog <ioctl-file> [<nreads>]");
return EXIT_FAILURE;
} else if (argc > 2) {
nreads = strtol(argv[2], NULL, 10);
} else {
nreads = 3;
}
fd_ioctl = open(argv[1], O_RDONLY);
if (fd_ioctl == -1) {
perror("open");
return EXIT_FAILURE;
}
ret = ioctl(fd_ioctl, LKMC_ANONYMOUS_INODE_GET_FD, &fd_ioctl_anon);
if (ret == -1) {
perror("ioctl");
return EXIT_FAILURE;
}
for (i = 0; i < nreads; ++i) {
ret = read(fd_ioctl_anon, buf, sizeof(buf));
printf("%.*s\n", ret, buf);
}
close(fd_ioctl_anon);
close(fd_ioctl);
return EXIT_SUCCESS;
}

44
userland/bst_vs_heap.cpp Normal file
View File

@@ -0,0 +1,44 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#bst-vs-heap */
#include <algorithm>
#include <iostream>
#include <queue>
#include <random>
#include <set>
#include "m5ops.h"
int main(int argc, char **argv) {
typedef uint64_t I;
std::vector<I> randoms;
size_t i, n;
std::priority_queue<I> heap;
std::set<I> bst;
unsigned int seed = std::random_device()();
// CLI arguments.
if (argc > 1) {
n = std::stoi(argv[1]);
} else {
n = 1000;
}
// Action.
for (i = 0; i < n; ++i) {
randoms.push_back(i);
}
std::shuffle(randoms.begin(), randoms.end(), std::mt19937(seed));
for (i = 0; i < n; ++i) {
auto random = randoms[i];
// Heap.
m5_resetstats();
heap.emplace(random);
m5_dumpstats();
// BST.
m5_resetstats();
bst.insert(random);
m5_dumpstats();
}
}

99
userland/common.h Normal file
View File

@@ -0,0 +1,99 @@
#ifndef COMMON_H
#define COMMON_H
#define _XOPEN_SOURCE 700
#include <fcntl.h> /* open */
#include <math.h> /* fabs */
#include <stdint.h> /* uint64_t */
#include <stdlib.h> /* size_t */
#include <stdio.h> /* snprintf */
#include <sys/types.h>
#include <unistd.h> /* pread, sysconf */
#include <stdbool.h>
/* Format documented at:
* https://github.com/torvalds/linux/blob/v4.9/Documentation/vm/pagemap.txt
*/
typedef struct {
uint64_t pfn : 54;
unsigned int soft_dirty : 1;
unsigned int file_page : 1;
unsigned int swapped : 1;
unsigned int present : 1;
} PagemapEntry;
/* Parse the pagemap entry for the given virtual address.
*
* @param[out] entry the parsed entry
* @param[in] pagemap_fd file descriptor to an open /proc/pid/pagemap file
* @param[in] vaddr virtual address to get entry for
* @return 0 for success, 1 for failure
*/
int pagemap_get_entry(PagemapEntry *entry, int pagemap_fd, uintptr_t vaddr)
{
size_t nread;
ssize_t ret;
uint64_t data;
nread = 0;
while (nread < sizeof(data)) {
ret = pread(
pagemap_fd,
&data,
sizeof(data),
(vaddr / sysconf(_SC_PAGE_SIZE)) * sizeof(data) + nread
);
nread += ret;
if (ret <= 0) {
return 1;
}
}
entry->pfn = data & (((uint64_t)1 << 54) - 1);
entry->soft_dirty = (data >> 54) & 1;
entry->file_page = (data >> 61) & 1;
entry->swapped = (data >> 62) & 1;
entry->present = (data >> 63) & 1;
return 0;
}
/* Convert the given virtual address to physical using /proc/PID/pagemap.
*
* @param[out] paddr physical address
* @param[in] pid process to convert for
* @param[in] vaddr virtual address to get entry for
* @return 0 for success, 1 for failure
*/
int virt_to_phys_user(uintptr_t *paddr, pid_t pid, uintptr_t vaddr)
{
char pagemap_file[BUFSIZ];
int pagemap_fd;
snprintf(pagemap_file, sizeof(pagemap_file), "/proc/%ju/pagemap", (uintmax_t)pid);
pagemap_fd = open(pagemap_file, O_RDONLY);
if (pagemap_fd < 0) {
return 1;
}
PagemapEntry entry;
if (pagemap_get_entry(&entry, pagemap_fd, vaddr)) {
return 1;
}
close(pagemap_fd);
*paddr = (entry.pfn * sysconf(_SC_PAGE_SIZE)) + (vaddr % sysconf(_SC_PAGE_SIZE));
return 0;
}
bool common_vector_equal(size_t n, double * v1, double * v2, double max_err)
{
double sum = 0.0;
double diff;
size_t i;
for (i = 0; i < n; ++i) {
diff = v1[i] - v2[i];
sum += diff * diff;
}
if (sqrt(sum)/n > max_err)
return false;
return true;
}
#endif

26
userland/ctrl_alt_del.c Normal file
View File

@@ -0,0 +1,26 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#ctrl-alt-del */
#define _XOPEN_SOURCE 700
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/reboot.h>
#include <unistd.h>
void signal_handler(int sig) {
write(STDOUT_FILENO, "cad\n", 4);
signal(sig, signal_handler);
}
int main(void) {
int i = 0;
/* Disable the forced reboot, enable sending SIGINT to init. */
reboot(RB_DISABLE_CAD);
signal(SIGINT, signal_handler);
while (1) {
sleep(1);
printf("%d\n", i);
i++;
}
return EXIT_SUCCESS;
}

13
userland/eigen_hello.cpp Normal file
View File

@@ -0,0 +1,13 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#eigen
* Adapted from: https://eigen.tuxfamily.org/dox/GettingStarted.html
*/
#include <iostream>
#include <Eigen/Dense>
int main() {
Eigen::MatrixXd m(2,2);
m(0,0) = 3;
m(1,0) = 2.5;
m(0,1) = -1;
m(1,1) = m(1,0) + m(0,1);
std::cout << m << std::endl;
}

1
userland/external.desc Normal file
View File

@@ -0,0 +1 @@
name: USERLAND

9
userland/hello.c Normal file
View File

@@ -0,0 +1,9 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#sanity-checks */
#include <stdio.h>
#include <stdlib.h>
int main(void) {
puts("hello");
return EXIT_SUCCESS;
}

7
userland/hello_cpp.cpp Normal file
View File

@@ -0,0 +1,7 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#sanity-checks */
#include <iostream>
int main() {
std::cout << "hello cpp" << std::endl;
}

View File

@@ -0,0 +1,26 @@
#define _XOPEN_SOURCE 700
#include <stdio.h>
#include <sys/reboot.h>
#include <unistd.h>
int main(int argc, char **argv)
{
int i;
puts("args:");
for (i = 0; i < argc; ++i)
puts(argv[i]);
puts("");
puts("env:");
extern char **environ;
char **env = environ;
while (*env) {
printf("%s\n", *env);
env++;
}
puts("");
/* Poweroff. */
reboot(RB_POWER_OFF);
}

67
userland/ioctl.c Normal file
View File

@@ -0,0 +1,67 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#ioctl */
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "../include/ioctl.h"
int main(int argc, char **argv)
{
char *ioctl_path;
int fd, request, arg0, arg1, arg_int, ret;
lkmc_ioctl_struct arg_struct;
if (argc < 2) {
puts("Usage: ./prog <ioctl-file> <request> [<arg>...]");
return EXIT_FAILURE;
}
ioctl_path = argv[1];
request = strtol(argv[2], NULL, 10);
if (argc > 3) {
arg0 = strtol(argv[3], NULL, 10);
}
if (argc > 4) {
arg1 = strtol(argv[4], NULL, 10);
}
fd = open(ioctl_path, O_RDONLY);
if (fd == -1) {
perror("open");
return EXIT_FAILURE;
}
switch (request)
{
case 0:
arg_int = arg0;
ret = ioctl(fd, LKMC_IOCTL_INC, &arg_int);
if (ret != -1) {
printf("%d\n", arg_int);
}
break;
case 1:
arg_struct.i = arg0;
arg_struct.j = arg1;
ret = ioctl(fd, LKMC_IOCTL_INC_DEC, &arg_struct);
if (ret != -1) {
printf("%d %d\n", arg_struct.i, arg_struct.j);
}
break;
default:
puts("error: unknown request");
return EXIT_FAILURE;
}
if (ret == -1) {
perror("ioctl");
printf("errno = %d\n", errno);
return EXIT_FAILURE;
}
close(fd);
return EXIT_SUCCESS;
}

738
userland/libdrm_modeset.c Normal file
View File

@@ -0,0 +1,738 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#drm
* Adapted from: https://github.com/dvdhrm/docs/blob/fad7c3203b14e67053e0fc41d8490138b8ff47dd/drm-howto/modeset.c */
/*
* modeset - DRM Modesetting Example
*
* Written 2012 by David Herrmann <dh.herrmann@googlemail.com>
* Dedicated to the Public Domain.
*/
/*
* DRM Modesetting Howto
* This document describes the DRM modesetting API. Before we can use the DRM
* API, we have to include xf86drm.h and xf86drmMode.h. Both are provided by
* libdrm which every major distribution ships by default. It has no other
* dependencies and is pretty small.
*
* Please ignore all forward-declarations of functions which are used later. I
* reordered the functions so you can read this document from top to bottom. If
* you reimplement it, you would probably reorder the functions to avoid all the
* nasty forward declarations.
*
* For easier reading, we ignore all memory-allocation errors of malloc() and
* friends here. However, we try to correctly handle all other kinds of errors
* that may occur.
*
* All functions and global variables are prefixed with "modeset_*" in this
* file. So it should be clear whether a function is a local helper or if it is
* provided by some external library.
*/
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <time.h>
#include <unistd.h>
#include <xf86drm.h>
#include <xf86drmMode.h>
struct modeset_dev;
static int modeset_find_crtc(int fd, drmModeRes *res, drmModeConnector *conn,
struct modeset_dev *dev);
static int modeset_create_fb(int fd, struct modeset_dev *dev);
static int modeset_setup_dev(int fd, drmModeRes *res, drmModeConnector *conn,
struct modeset_dev *dev);
static int modeset_open(int *out, const char *node);
static int modeset_prepare(int fd);
static void modeset_draw(void);
static void modeset_cleanup(int fd);
/*
* When the linux kernel detects a graphics-card on your machine, it loads the
* correct device driver (located in kernel-tree at ./drivers/gpu/drm/<xy>) and
* provides two character-devices to control it. Udev (or whatever hotplugging
* application you use) will create them as:
* /dev/dri/card0
* /dev/dri/controlID64
* We only need the first one. You can hard-code this path into your application
* like we do here, but it is recommended to use libudev with real hotplugging
* and multi-seat support. However, this is beyond the scope of this document.
* Also note that if you have multiple graphics-cards, there may also be
* /dev/dri/card1, /dev/dri/card2, ...
*
* We simply use /dev/dri/card0 here but the user can specify another path on
* the command line.
*
* modeset_open(out, node): This small helper function opens the DRM device
* which is given as @node. The new fd is stored in @out on success. On failure,
* a negative error code is returned.
* After opening the file, we also check for the DRM_CAP_DUMB_BUFFER capability.
* If the driver supports this capability, we can create simple memory-mapped
* buffers without any driver-dependent code. As we want to avoid any radeon,
* nvidia, intel, etc. specific code, we depend on DUMB_BUFFERs here.
*/
static int modeset_open(int *out, const char *node)
{
int fd, ret;
uint64_t has_dumb;
fd = open(node, O_RDWR | O_CLOEXEC);
if (fd < 0) {
ret = -errno;
fprintf(stderr, "cannot open '%s': %m\n", node);
return ret;
}
if (drmGetCap(fd, DRM_CAP_DUMB_BUFFER, &has_dumb) < 0 ||
!has_dumb) {
fprintf(stderr, "drm device '%s' does not support dumb buffers\n",
node);
close(fd);
return -EOPNOTSUPP;
}
*out = fd;
return 0;
}
/*
* As a next step we need to find our available display devices. libdrm provides
* a drmModeRes structure that contains all the needed information. We can
* retrieve it via drmModeGetResources(fd) and free it via
* drmModeFreeResources(res) again.
*
* A physical connector on your graphics card is called a "connector". You can
* plug a monitor into it and control what is displayed. We are definitely
* interested in what connectors are currently used, so we simply iterate
* through the list of connectors and try to display a test-picture on each
* available monitor.
* However, this isn't as easy as it sounds. First, we need to check whether the
* connector is actually used (a monitor is plugged in and turned on). Then we
* need to find a CRTC that can control this connector. CRTCs are described
* later on. After that we create a framebuffer object. If we have all this, we
* can mmap() the framebuffer and draw a test-picture into it. Then we can tell
* the DRM device to show the framebuffer on the given CRTC with the selected
* connector.
*
* As we want to draw moving pictures on the framebuffer, we actually have to
* remember all these settings. Therefore, we create one "struct modeset_dev"
* object for each connector+crtc+framebuffer pair that we successfully
* initialized and push it into the global device-list.
*
* Each field of this structure is described when it is first used. But as a
* summary:
* "struct modeset_dev" contains: {
* - @next: points to the next device in the single-linked list
*
* - @width: width of our buffer object
* - @height: height of our buffer object
* - @stride: stride value of our buffer object
* - @size: size of the memory mapped buffer
* - @handle: a DRM handle to the buffer object that we can draw into
* - @map: pointer to the memory mapped buffer
*
* - @mode: the display mode that we want to use
* - @fb: a framebuffer handle with our buffer object as scanout buffer
* - @conn: the connector ID that we want to use with this buffer
* - @crtc: the crtc ID that we want to use with this connector
* - @saved_crtc: the configuration of the crtc before we changed it. We use it
* so we can restore the same mode when we exit.
* }
*/
struct modeset_dev {
struct modeset_dev *next;
uint32_t width;
uint32_t height;
uint32_t stride;
uint32_t size;
uint32_t handle;
uint8_t *map;
drmModeModeInfo mode;
uint32_t fb;
uint32_t conn;
uint32_t crtc;
drmModeCrtc *saved_crtc;
};
static struct modeset_dev *modeset_list = NULL;
/*
* So as next step we need to actually prepare all connectors that we find. We
* do this in this little helper function:
*
* modeset_prepare(fd): This helper function takes the DRM fd as argument and
* then simply retrieves the resource-info from the device. It then iterates
* through all connectors and calls other helper functions to initialize this
* connector (described later on).
* If the initialization was successful, we simply add this object as new device
* into the global modeset device list.
*
* The resource-structure contains a list of all connector-IDs. We use the
* helper function drmModeGetConnector() to retrieve more information on each
* connector. After we are done with it, we free it again with
* drmModeFreeConnector().
* Our helper modeset_setup_dev() returns -ENOENT if the connector is currently
* unused and no monitor is plugged in. So we can ignore this connector.
*/
static int modeset_prepare(int fd)
{
drmModeRes *res;
drmModeConnector *conn;
unsigned int i;
struct modeset_dev *dev;
int ret;
/* retrieve resources */
res = drmModeGetResources(fd);
if (!res) {
fprintf(stderr, "cannot retrieve DRM resources (%d): %m\n",
errno);
return -errno;
}
/* iterate all connectors */
for (i = 0; i < (unsigned int)res->count_connectors; ++i) {
/* get information for each connector */
conn = drmModeGetConnector(fd, res->connectors[i]);
if (!conn) {
fprintf(stderr, "cannot retrieve DRM connector %u:%u (%d): %m\n",
i, res->connectors[i], errno);
continue;
}
/* create a device structure */
dev = malloc(sizeof(*dev));
memset(dev, 0, sizeof(*dev));
dev->conn = conn->connector_id;
/* call helper function to prepare this connector */
ret = modeset_setup_dev(fd, res, conn, dev);
if (ret) {
if (ret != -ENOENT) {
errno = -ret;
fprintf(stderr, "cannot setup device for connector %u:%u (%d): %m\n",
i, res->connectors[i], errno);
}
free(dev);
drmModeFreeConnector(conn);
continue;
}
/* free connector data and link device into global list */
drmModeFreeConnector(conn);
dev->next = modeset_list;
modeset_list = dev;
}
/* free resources again */
drmModeFreeResources(res);
return 0;
}
/*
* Now we dig deeper into setting up a single connector. As described earlier,
* we need to check several things first:
* * If the connector is currently unused, that is, no monitor is plugged in,
* then we can ignore it.
* * We have to find a suitable resolution and refresh-rate. All this is
* available in drmModeModeInfo structures saved for each crtc. We simply
* use the first mode that is available. This is always the mode with the
* highest resolution.
* A more sophisticated mode-selection should be done in real applications,
* though.
* * Then we need to find an CRTC that can drive this connector. A CRTC is an
* internal resource of each graphics-card. The number of CRTCs controls how
* many connectors can be controlled indepedently. That is, a graphics-cards
* may have more connectors than CRTCs, which means, not all monitors can be
* controlled independently.
* There is actually the possibility to control multiple connectors via a
* single CRTC if the monitors should display the same content. However, we
* do not make use of this here.
* So think of connectors as pipelines to the connected monitors and the
* CRTCs are the controllers that manage which data goes to which pipeline.
* If there are more pipelines than CRTCs, then we cannot control all of
* them at the same time.
* * We need to create a framebuffer for this connector. A framebuffer is a
* memory buffer that we can write XRGB32 data into. So we use this to
* render our graphics and then the CRTC can scan-out this data from the
* framebuffer onto the monitor.
*/
static int modeset_setup_dev(int fd, drmModeRes *res, drmModeConnector *conn,
struct modeset_dev *dev)
{
int ret;
/* check if a monitor is connected */
if (conn->connection != DRM_MODE_CONNECTED) {
fprintf(stderr, "ignoring unused connector %u\n",
conn->connector_id);
return -ENOENT;
}
/* check if there is at least one valid mode */
if (conn->count_modes == 0) {
fprintf(stderr, "no valid mode for connector %u\n",
conn->connector_id);
return -EFAULT;
}
/* copy the mode information into our device structure */
memcpy(&dev->mode, &conn->modes[0], sizeof(dev->mode));
dev->width = conn->modes[0].hdisplay;
dev->height = conn->modes[0].vdisplay;
fprintf(stderr, "mode for connector %u is %ux%u\n",
conn->connector_id, dev->width, dev->height);
/* find a crtc for this connector */
ret = modeset_find_crtc(fd, res, conn, dev);
if (ret) {
fprintf(stderr, "no valid crtc for connector %u\n",
conn->connector_id);
return ret;
}
/* create a framebuffer for this CRTC */
ret = modeset_create_fb(fd, dev);
if (ret) {
fprintf(stderr, "cannot create framebuffer for connector %u\n",
conn->connector_id);
return ret;
}
return 0;
}
/*
* modeset_find_crtc(fd, res, conn, dev): This small helper tries to find a
* suitable CRTC for the given connector. We have actually have to introduce one
* more DRM object to make this more clear: Encoders.
* Encoders help the CRTC to convert data from a framebuffer into the right
* format that can be used for the chosen connector. We do not have to
* understand any more of these conversions to make use of it. However, you must
* know that each connector has a limited list of encoders that it can use. And
* each encoder can only work with a limited list of CRTCs. So what we do is
* trying each encoder that is available and looking for a CRTC that this
* encoder can work with. If we find the first working combination, we are happy
* and write it into the @dev structure.
* But before iterating all available encoders, we first try the currently
* active encoder+crtc on a connector to avoid a full modeset.
*
* However, before we can use a CRTC we must make sure that no other device,
* that we setup previously, is already using this CRTC. Remember, we can only
* drive one connector per CRTC! So we simply iterate through the "modeset_list"
* of previously setup devices and check that this CRTC wasn't used before.
* Otherwise, we continue with the next CRTC/Encoder combination.
*/
static int modeset_find_crtc(int fd, drmModeRes *res, drmModeConnector *conn,
struct modeset_dev *dev)
{
drmModeEncoder *enc;
unsigned int i, j;
int32_t crtc;
struct modeset_dev *iter;
/* first try the currently conected encoder+crtc */
if (conn->encoder_id)
enc = drmModeGetEncoder(fd, conn->encoder_id);
else
enc = NULL;
if (enc) {
if (enc->crtc_id) {
crtc = enc->crtc_id;
for (iter = modeset_list; iter; iter = iter->next) {
if ((int32_t)iter->crtc == crtc) {
crtc = -1;
break;
}
}
if (crtc >= 0) {
drmModeFreeEncoder(enc);
dev->crtc = crtc;
return 0;
}
}
drmModeFreeEncoder(enc);
}
/* If the connector is not currently bound to an encoder or if the
* encoder+crtc is already used by another connector (actually unlikely
* but lets be safe), iterate all other available encoders to find a
* matching CRTC. */
for (i = 0; i < (unsigned int)conn->count_encoders; ++i) {
enc = drmModeGetEncoder(fd, conn->encoders[i]);
if (!enc) {
fprintf(stderr, "cannot retrieve encoder %u:%u (%d): %m\n",
i, conn->encoders[i], errno);
continue;
}
/* iterate all global CRTCs */
for (j = 0; j < (unsigned int)res->count_crtcs; ++j) {
/* check whether this CRTC works with the encoder */
if (!(enc->possible_crtcs & (1 << j)))
continue;
/* check that no other device already uses this CRTC */
crtc = res->crtcs[j];
for (iter = modeset_list; iter; iter = iter->next) {
if ((int32_t)iter->crtc == crtc) {
crtc = -1;
break;
}
}
/* we have found a CRTC, so save it and return */
if (crtc >= 0) {
drmModeFreeEncoder(enc);
dev->crtc = crtc;
return 0;
}
}
drmModeFreeEncoder(enc);
}
fprintf(stderr, "cannot find suitable CRTC for connector %u\n",
conn->connector_id);
return -ENOENT;
}
/*
* modeset_create_fb(fd, dev): After we have found a crtc+connector+mode
* combination, we need to actually create a suitable framebuffer that we can
* use with it. There are actually two ways to do that:
* * We can create a so called "dumb buffer". This is a buffer that we can
* memory-map via mmap() and every driver supports this. We can use it for
* unaccelerated software rendering on the CPU.
* * We can use libgbm to create buffers available for hardware-acceleration.
* libgbm is an abstraction layer that creates these buffers for each
* available DRM driver. As there is no generic API for this, each driver
* provides its own way to create these buffers.
* We can then use such buffers to create OpenGL contexts with the mesa3D
* library.
* We use the first solution here as it is much simpler and doesn't require any
* external libraries. However, if you want to use hardware-acceleration via
* OpenGL, it is actually pretty easy to create such buffers with libgbm and
* libEGL. But this is beyond the scope of this document.
*
* So what we do is requesting a new dumb-buffer from the driver. We specify the
* same size as the current mode that we selected for the connector.
* Then we request the driver to prepare this buffer for memory mapping. After
* that we perform the actual mmap() call. So we can now access the framebuffer
* memory directly via the dev->map memory map.
*/
static int modeset_create_fb(int fd, struct modeset_dev *dev)
{
struct drm_mode_create_dumb creq;
struct drm_mode_destroy_dumb dreq;
struct drm_mode_map_dumb mreq;
int ret;
/* create dumb buffer */
memset(&creq, 0, sizeof(creq));
creq.width = dev->width;
creq.height = dev->height;
creq.bpp = 32;
ret = drmIoctl(fd, DRM_IOCTL_MODE_CREATE_DUMB, &creq);
if (ret < 0) {
fprintf(stderr, "cannot create dumb buffer (%d): %m\n",
errno);
return -errno;
}
dev->stride = creq.pitch;
dev->size = creq.size;
dev->handle = creq.handle;
/* create framebuffer object for the dumb-buffer */
ret = drmModeAddFB(fd, dev->width, dev->height, 24, 32, dev->stride,
dev->handle, &dev->fb);
if (ret) {
fprintf(stderr, "cannot create framebuffer (%d): %m\n",
errno);
ret = -errno;
goto err_destroy;
}
/* prepare buffer for memory mapping */
memset(&mreq, 0, sizeof(mreq));
mreq.handle = dev->handle;
ret = drmIoctl(fd, DRM_IOCTL_MODE_MAP_DUMB, &mreq);
if (ret) {
fprintf(stderr, "cannot map dumb buffer (%d): %m\n",
errno);
ret = -errno;
goto err_fb;
}
/* perform actual memory mapping */
dev->map = mmap(0, dev->size, PROT_READ | PROT_WRITE, MAP_SHARED,
fd, mreq.offset);
if (dev->map == MAP_FAILED) {
fprintf(stderr, "cannot mmap dumb buffer (%d): %m\n",
errno);
ret = -errno;
goto err_fb;
}
/* clear the framebuffer to 0 */
memset(dev->map, 0, dev->size);
return 0;
err_fb:
drmModeRmFB(fd, dev->fb);
err_destroy:
memset(&dreq, 0, sizeof(dreq));
dreq.handle = dev->handle;
drmIoctl(fd, DRM_IOCTL_MODE_DESTROY_DUMB, &dreq);
return ret;
}
/*
* Finally! We have a connector with a suitable CRTC. We know which mode we want
* to use and we have a framebuffer of the correct size that we can write to.
* There is nothing special left to do. We only have to program the CRTC to
* connect each new framebuffer to each selected connector for each combination
* that we saved in the global modeset_list.
* This is done with a call to drmModeSetCrtc().
*
* So we are ready for our main() function. First we check whether the user
* specified a DRM device on the command line, otherwise we use the default
* /dev/dri/card0. Then we open the device via modeset_open(). modeset_prepare()
* prepares all connectors and we can loop over "modeset_list" and call
* drmModeSetCrtc() on every CRTC/connector combination.
*
* But printing empty black pages is boring so we have another helper function
* modeset_draw() that draws some colors into the framebuffer for 5 seconds and
* then returns. And then we have all the cleanup functions which correctly free
* all devices again after we used them. All these functions are described below
* the main() function.
*
* As a side note: drmModeSetCrtc() actually takes a list of connectors that we
* want to control with this CRTC. We pass only one connector, though. As
* explained earlier, if we used multiple connectors, then all connectors would
* have the same controlling framebuffer so the output would be cloned. This is
* most often not what you want so we avoid explaining this feature here.
* Furthermore, all connectors will have to run with the same mode, which is
* also often not guaranteed. So instead, we only use one connector per CRTC.
*
* Before calling drmModeSetCrtc() we also save the current CRTC configuration.
* This is used in modeset_cleanup() to restore the CRTC to the same mode as was
* before we changed it.
* If we don't do this, the screen will stay blank after we exit until another
* application performs modesetting itself.
*/
int main(int argc, char **argv)
{
int ret, fd;
const char *card;
struct modeset_dev *iter;
/* check which DRM device to open */
if (argc > 1)
card = argv[1];
else
card = "/dev/dri/card0";
fprintf(stderr, "using card '%s'\n", card);
/* open the DRM device */
ret = modeset_open(&fd, card);
if (ret)
goto out_return;
/* prepare all connectors and CRTCs */
ret = modeset_prepare(fd);
if (ret)
goto out_close;
/* perform actual modesetting on each found connector+CRTC */
for (iter = modeset_list; iter; iter = iter->next) {
iter->saved_crtc = drmModeGetCrtc(fd, iter->crtc);
ret = drmModeSetCrtc(fd, iter->crtc, iter->fb, 0, 0,
&iter->conn, 1, &iter->mode);
if (ret)
fprintf(stderr, "cannot set CRTC for connector %u (%d): %m\n",
iter->conn, errno);
}
/* draw some colors for 5seconds */
modeset_draw();
/* cleanup everything */
modeset_cleanup(fd);
ret = 0;
out_close:
close(fd);
out_return:
if (ret) {
errno = -ret;
fprintf(stderr, "modeset failed with error %d: %m\n", errno);
} else {
fprintf(stderr, "exiting\n");
}
return ret;
}
/*
* A short helper function to compute a changing color value. No need to
* understand it.
*/
static uint8_t next_color(bool *up, uint8_t cur, unsigned int mod)
{
uint8_t next;
next = cur + (*up ? 1 : -1) * (rand() % mod);
if ((*up && next < cur) || (!*up && next > cur)) {
*up = !*up;
next = cur;
}
return next;
}
/*
* modeset_draw(): This draws a solid color into all configured framebuffers.
* Every 100ms the color changes to a slightly different color so we get some
* kind of smoothly changing color-gradient.
*
* The color calculation can be ignored as it is pretty boring. So the
* interesting stuff is iterating over "modeset_list" and then through all lines
* and width. We then set each pixel individually to the current color.
*
* We do this 50 times as we sleep 100ms after each redraw round. This makes
* 50*100ms = 5000ms = 5s so it takes about 5seconds to finish this loop.
*
* Please note that we draw directly into the framebuffer. This means that you
* will see flickering as the monitor might refresh while we redraw the screen.
* To avoid this you would need to use two framebuffers and a call to
* drmModeSetCrtc() to switch between both buffers.
* You can also use drmModePageFlip() to do a vsync'ed pageflip. But this is
* beyond the scope of this document.
*/
static void modeset_draw(void)
{
uint8_t r, g, b;
bool r_up, g_up, b_up;
unsigned int i, j, k, off;
struct modeset_dev *iter;
srand(time(NULL));
r = rand() % 0xff;
g = rand() % 0xff;
b = rand() % 0xff;
r_up = g_up = b_up = true;
for (i = 0; i < 50; ++i) {
r = next_color(&r_up, r, 20);
g = next_color(&g_up, g, 10);
b = next_color(&b_up, b, 5);
for (iter = modeset_list; iter; iter = iter->next) {
for (j = 0; j < iter->height; ++j) {
for (k = 0; k < iter->width; ++k) {
off = iter->stride * j + k * 4;
*(uint32_t*)&iter->map[off] =
(r << 16) | (g << 8) | b;
}
}
}
usleep(100000);
}
}
/*
* modeset_cleanup(fd): This cleans up all the devices we created during
* modeset_prepare(). It resets the CRTCs to their saved states and deallocates
* all memory.
* It should be pretty obvious how all of this works.
*/
static void modeset_cleanup(int fd)
{
struct modeset_dev *iter;
struct drm_mode_destroy_dumb dreq;
while (modeset_list) {
/* remove from global list */
iter = modeset_list;
modeset_list = iter->next;
/* restore saved CRTC configuration */
drmModeSetCrtc(fd,
iter->saved_crtc->crtc_id,
iter->saved_crtc->buffer_id,
iter->saved_crtc->x,
iter->saved_crtc->y,
&iter->conn,
1,
&iter->saved_crtc->mode);
drmModeFreeCrtc(iter->saved_crtc);
/* unmap buffer */
munmap(iter->map, iter->size);
/* delete framebuffer */
drmModeRmFB(fd, iter->fb);
/* delete dumb buffer */
memset(&dreq, 0, sizeof(dreq));
dreq.handle = iter->handle;
drmIoctl(fd, DRM_IOCTL_MODE_DESTROY_DUMB, &dreq);
/* free allocated memory */
free(iter);
}
}
/*
* I hope this was a short but easy overview of the DRM modesetting API. The DRM
* API offers much more capabilities including:
* - double-buffering or tripple-buffering (or whatever you want)
* - vsync'ed page-flips
* - hardware-accelerated rendering (for example via OpenGL)
* - output cloning
* - graphics-clients plus authentication
* - DRM planes/overlays/sprites
* - ...
* If you are interested in these topics, I can currently only redirect you to
* existing implementations, including:
* - plymouth (which uses dumb-buffers like this example; very easy to understand)
* - kmscon (which uses libuterm to do this)
* - wayland (very sophisticated DRM renderer; hard to understand fully as it
* uses more complicated techniques like DRM planes)
* - xserver (very hard to understand as it is split across many files/projects)
*
* But understanding how modesetting (as described in this document) works, is
* essential to understand all further DRM topics.
*
* Any feedback is welcome. Feel free to use this code freely for your own
* documentation or projects.
*
* - Hosted on http://github.com/dvdhrm/docs
* - Written by David Herrmann <dh.herrmann@googlemail.com>
*/

36
userland/m5ops.c Normal file
View File

@@ -0,0 +1,36 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#m5ops-instructions */
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include "m5ops.h"
int main(int argc, char **argv)
{
char action;
if (argc > 1) {
action = argv[1][0];
} else {
action = 'e';
}
switch (action)
{
case 'c':
m5_checkpoint();
break;
case 'd':
m5_dumpstats();
break;
case 'e':
m5_exit();
break;
case 'f':
m5_fail_1();
break;
case 'r':
m5_resetstats();
break;
}
return EXIT_SUCCESS;
}

54
userland/m5ops.h Normal file
View File

@@ -0,0 +1,54 @@
#ifndef M5OPS_H
#define M5OPS_H
#if defined(__arm__)
static void m5_checkpoint(void)
{
__asm__ __volatile__ ("mov r0, #0; mov r1, #0; mov r2, #0; mov r3, #0; .inst 0xEE000110 | (0x43 << 16);");
};
static void m5_dumpstats(void)
{
__asm__ __volatile__ ("mov r0, #0; mov r1, #0; mov r2, #0; mov r3, #0; .inst 0xEE000110 | (0x41 << 16);");
};
static void m5_exit()
{
__asm__ __volatile__ ("mov r0, #0; mov r1, #0; .inst 0xEE000110 | (0x21 << 16);");
};
static void m5_fail_1(void)
{
__asm__ __volatile__ ("mov r0, #0; mov r1, #0; mov r2, #1; mov r3, #0; .inst 0xEE000110 | (0x22 << 16);");
};
static void m5_resetstats(void)
{
__asm__ __volatile__ ("mov r0, #0; mov r1, #0; mov r2, #0; mov r3, #0; .inst 0xEE000110 | (0x40 << 16);");
};
#elif defined(__aarch64__)
static void m5_checkpoint(void)
{
__asm__ __volatile__ ("mov x0, #0; mov x1, #0; .inst 0xFF000110 | (0x43 << 16);");
};
static void m5_dumpstats(void)
{
__asm__ __volatile__ ("mov x0, #0; mov x1, #0; .inst 0xFF000110 | (0x41 << 16);");
};
static void m5_exit(void)
{
__asm__ __volatile__ ("mov x0, #0; .inst 0XFF000110 | (0x21 << 16);");
};
static void m5_fail_1(void)
{
__asm__ __volatile__ ("mov x0, #0; mov x1, #1; .inst 0xFF000110 | (0x22 << 16);");
};
static void m5_resetstats(void)
{
__asm__ __volatile__ ("mov x0, #0; mov x1, #0; .inst 0XFF000110 | (0x40 << 16);");
};
#else
static void m5_checkpoint(void) {};
static void m5_dumpstats(void) {};
static void m5_exit(void) {};
static void m5_fail_1(void) {};
static void m5_resetstats(void) {};
#endif
#endif

94
userland/mmap.c Normal file
View File

@@ -0,0 +1,94 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#mmap */
#define _XOPEN_SOURCE 700
#include <assert.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h> /* uintmax_t */
#include <string.h>
#include <sys/mman.h>
#include <unistd.h> /* sysconf */
#include "common.h" /* virt_to_phys_user */
enum { BUFFER_SIZE = 4 };
int main(int argc, char **argv)
{
int fd;
long page_size;
char *address1, *address2;
char buf[BUFFER_SIZE];
uintptr_t paddr;
if (argc < 2) {
printf("Usage: %s <mmap_file>\n", argv[0]);
return EXIT_FAILURE;
}
page_size = sysconf(_SC_PAGE_SIZE);
printf("open pathname = %s\n", argv[1]);
fd = open(argv[1], O_RDWR | O_SYNC);
if (fd < 0) {
perror("open");
assert(0);
}
printf("fd = %d\n", fd);
/* mmap twice for double fun. */
puts("mmap 1");
address1 = mmap(NULL, page_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (address1 == MAP_FAILED) {
perror("mmap");
assert(0);
}
puts("mmap 2");
address2 = mmap(NULL, page_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (address2 == MAP_FAILED) {
perror("mmap");
return EXIT_FAILURE;
}
assert(address1 != address2);
/* Read and modify memory. */
puts("access 1");
assert(!strcmp(address1, "asdf"));
/* vm_fault */
puts("access 2");
assert(!strcmp(address2, "asdf"));
/* vm_fault */
strcpy(address1, "qwer");
/* Also modified. So both virtual addresses point to the same physical address. */
assert(!strcmp(address2, "qwer"));
/* Check that the physical addresses are the same.
* They are, but TODO why virt_to_phys on kernel gives a different value? */
assert(!virt_to_phys_user(&paddr, getpid(), (uintptr_t)address1));
printf("paddr1 = 0x%jx\n", (uintmax_t)paddr);
assert(!virt_to_phys_user(&paddr, getpid(), (uintptr_t)address2));
printf("paddr2 = 0x%jx\n", (uintmax_t)paddr);
/* Check that modifications made from userland are also visible from the kernel. */
read(fd, buf, BUFFER_SIZE);
assert(!memcmp(buf, "qwer", BUFFER_SIZE));
/* Modify the data from the kernel, and check that the change is visible from userland. */
write(fd, "zxcv", 4);
assert(!strcmp(address1, "zxcv"));
assert(!strcmp(address2, "zxcv"));
/* Cleanup. */
puts("munmap 1");
if (munmap(address1, page_size)) {
perror("munmap");
assert(0);
}
puts("munmap 2");
if (munmap(address2, page_size)) {
perror("munmap");
assert(0);
}
puts("close");
close(fd);
return EXIT_SUCCESS;
}

61
userland/myinsmod.c Normal file
View File

@@ -0,0 +1,61 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#myinsmod */
#define _GNU_SOURCE
#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#define init_module(module_image, len, param_values) syscall(__NR_init_module, module_image, len, param_values)
#define finit_module(fd, param_values, flags) syscall(__NR_finit_module, fd, param_values, flags)
int main(int argc, char **argv) {
const char *params;
int fd, use_finit;
size_t image_size;
struct stat st;
void *image;
/* CLI handling. */
if (argc < 2) {
puts("Usage ./prog mymodule.ko [args="" [use_finit=0]");
return EXIT_FAILURE;
}
if (argc < 3) {
params = "";
} else {
params = argv[2];
}
if (argc < 4) {
use_finit = 0;
} else {
use_finit = (argv[3][0] != '0');
}
/* Action. */
fd = open(argv[1], O_RDONLY);
if (use_finit) {
puts("finit");
if (finit_module(fd, params, 0) != 0) {
perror("finit_module");
return EXIT_FAILURE;
}
close(fd);
} else {
puts("init");
fstat(fd, &st);
image_size = st.st_size;
image = malloc(image_size);
read(fd, image, image_size);
close(fd);
if (init_module(image, image_size, params) != 0) {
perror("init_module");
return EXIT_FAILURE;
}
free(image);
}
return EXIT_SUCCESS;
}

24
userland/myrmmod.c Normal file
View File

@@ -0,0 +1,24 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#myinsmod */
#define _GNU_SOURCE
#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#define delete_module(name, flags) syscall(__NR_delete_module, name, flags)
int main(int argc, char **argv) {
if (argc != 2) {
puts("Usage ./prog mymodule");
return EXIT_FAILURE;
}
if (delete_module(argv[1], O_NONBLOCK) != 0) {
perror("delete_module");
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}

52
userland/netlink.c Normal file
View File

@@ -0,0 +1,52 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#netlink-sockets */
#include <linux/netlink.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <unistd.h>
#include "../include/netlink.h"
#define MAX_PAYLOAD 1024
/* Some of these structs fields must be zeroed.
* We could brute force memset them, but
* TODO determine exactly which, and move into main. */
int sock_fd;
struct iovec iov;
struct msghdr msg;
struct nlmsghdr *nlh;
struct sockaddr_nl src_addr, dest_addr;
int main(void)
{
sock_fd = socket(PF_NETLINK, SOCK_RAW, NETLINK_USER);
if (sock_fd < 0) {
perror("socket");
return EXIT_FAILURE;
}
src_addr.nl_family = AF_NETLINK;
src_addr.nl_pid = getpid();
bind(sock_fd, (struct sockaddr *)&src_addr, sizeof(src_addr));
dest_addr.nl_family = AF_NETLINK;
nlh = (struct nlmsghdr *)malloc(NLMSG_SPACE(MAX_PAYLOAD));
memset(nlh, 0, NLMSG_SPACE(MAX_PAYLOAD));
nlh->nlmsg_len = NLMSG_SPACE(MAX_PAYLOAD);
nlh->nlmsg_pid = getpid();
nlh->nlmsg_flags = 0;
strcpy(NLMSG_DATA(nlh), "user request");
iov.iov_base = (void *)nlh;
iov.iov_len = nlh->nlmsg_len;
msg.msg_name = (void *)&dest_addr;
msg.msg_namelen = sizeof(dest_addr);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
fprintf(stderr, "before sendmsg\n");
sendmsg(sock_fd, &msg, 0);
fprintf(stderr, "after sendmsg\n");
recvmsg(sock_fd, &msg, 0);
printf("%s\n", (char *)NLMSG_DATA(nlh));
close(sock_fd);
}

16
userland/openblas_hello.c Normal file
View File

@@ -0,0 +1,16 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#blas
* Adapted from: https://github.com/xianyi/OpenBLAS/wiki/User-Manual/59b62f98e7400270fb03ad1d85fba5b64ebbff2b#call-cblas-interface */
#include "common.h"
#include <assert.h>
#include <cblas.h>
int main(void)
{
double A[6] = {1.0, 2.0, 1.0, -3.0, 4.0, -1.0};
double B[6] = {1.0, 2.0, 1.0, -3.0, 4.0, -1.0};
double C[9] = {0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5};
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasTrans, 3, 3, 2, 1, A, 3, B, 3, 2, C, 3);
assert(common_vector_equal(9, C, (double[]){11.0, -9.0, 5.0, -9.0, 21.0, -1.0, 5.0, -1.0, 3.0}, 1e-6));
}

19
userland/openmp.c Normal file
View File

@@ -0,0 +1,19 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#openmp */
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
int main () {
int nthreads, tid;
#pragma omp parallel private(nthreads, tid)
{
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);
if (tid == 0) {
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);
}
}
return EXIT_SUCCESS;
}

116
userland/pagemap_dump.c Normal file
View File

@@ -0,0 +1,116 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#pagemap_dump-out */
#define _XOPEN_SOURCE 700
#include <errno.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include "common.h" /* pagemap_get_entry */
int main(int argc, char **argv)
{
char buffer[BUFSIZ];
char maps_file[BUFSIZ];
char pagemap_file[BUFSIZ];
int maps_fd;
int offset = 0;
int pagemap_fd;
pid_t pid;
if (argc < 2) {
printf("Usage: %s pid\n", argv[0]);
return EXIT_FAILURE;
}
pid = strtoull(argv[1], NULL, 0);
snprintf(maps_file, sizeof(maps_file), "/proc/%ju/maps", (uintmax_t)pid);
snprintf(pagemap_file, sizeof(pagemap_file), "/proc/%ju/pagemap", (uintmax_t)pid);
maps_fd = open(maps_file, O_RDONLY);
if (maps_fd < 0) {
perror("open maps");
return EXIT_FAILURE;
}
pagemap_fd = open(pagemap_file, O_RDONLY);
if (pagemap_fd < 0) {
perror("open pagemap");
return EXIT_FAILURE;
}
printf("vaddr pfn soft-dirty file/shared swapped present library\n");
for (;;) {
ssize_t length = read(maps_fd, buffer + offset, sizeof buffer - offset);
if (length <= 0) break;
length += offset;
for (size_t i = offset; i < (size_t)length; i++) {
uintptr_t low = 0, high = 0;
if (buffer[i] == '\n' && i) {
const char *lib_name;
size_t y;
/* Parse a line from maps. Each line contains a range that contains many pages. */
{
size_t x = i - 1;
while (x && buffer[x] != '\n') x--;
if (buffer[x] == '\n') x++;
while (buffer[x] != '-' && x < sizeof buffer) {
char c = buffer[x++];
low *= 16;
if (c >= '0' && c <= '9') {
low += c - '0';
} else if (c >= 'a' && c <= 'f') {
low += c - 'a' + 10;
} else {
break;
}
}
while (buffer[x] != '-' && x < sizeof buffer) x++;
if (buffer[x] == '-') x++;
while (buffer[x] != ' ' && x < sizeof buffer) {
char c = buffer[x++];
high *= 16;
if (c >= '0' && c <= '9') {
high += c - '0';
} else if (c >= 'a' && c <= 'f') {
high += c - 'a' + 10;
} else {
break;
}
}
lib_name = 0;
for (int field = 0; field < 4; field++) {
x++;
while(buffer[x] != ' ' && x < sizeof buffer) x++;
}
while (buffer[x] == ' ' && x < sizeof buffer) x++;
y = x;
while (buffer[y] != '\n' && y < sizeof buffer) y++;
buffer[y] = 0;
lib_name = buffer + x;
}
/* Get info about all pages in this page range with pagemap. */
{
PagemapEntry entry;
for (uintptr_t vaddr = low; vaddr < high; vaddr += sysconf(_SC_PAGE_SIZE)) {
/* TODO always fails for the last page (vsyscall), why? pread returns 0. */
if (!pagemap_get_entry(&entry, pagemap_fd, vaddr)) {
printf("%jx %jx %u %u %u %u %s\n",
(uintmax_t)vaddr,
(uintmax_t)entry.pfn,
entry.soft_dirty,
entry.file_page,
entry.swapped,
entry.present,
lib_name
);
}
}
}
buffer[y] = '\n';
}
}
}
close(maps_fd);
close(pagemap_fd);
return EXIT_SUCCESS;
}

41
userland/poll.c Normal file
View File

@@ -0,0 +1,41 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#poll */
#define _XOPEN_SOURCE 700
#include <assert.h>
#include <fcntl.h> /* creat, O_CREAT */
#include <poll.h> /* poll */
#include <stdio.h> /* printf, puts, snprintf */
#include <stdlib.h> /* EXIT_FAILURE, EXIT_SUCCESS */
#include <unistd.h> /* read */
int main(int argc, char **argv) {
char buf[1024];
int fd, i, n;
short revents;
struct pollfd pfd;
if (argc < 2) {
fprintf(stderr, "usage: %s <poll-device>\n", argv[0]);
exit(EXIT_FAILURE);
}
fd = open(argv[1], O_RDONLY | O_NONBLOCK);
if (fd == -1) {
perror("open");
exit(EXIT_FAILURE);
}
pfd.fd = fd;
pfd.events = POLLIN;
while (1) {
puts("loop");
i = poll(&pfd, 1, -1);
if (i == -1) {
perror("poll");
assert(0);
}
revents = pfd.revents;
if (revents & POLLIN) {
n = read(pfd.fd, buf, sizeof(buf));
printf("POLLIN n=%d buf=%.*s\n", n, n, buf);
}
}
}

9
userland/poweroff.c Normal file
View File

@@ -0,0 +1,9 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#poweroff-out */
#define _XOPEN_SOURCE 700
#include <sys/reboot.h>
#include <unistd.h>
int main(void) {
reboot(RB_POWER_OFF);
}

176
userland/proc_events.c Normal file
View File

@@ -0,0 +1,176 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#config_proc_events
*
* Adapted from: https://stackoverflow.com/questions/6075013/detect-launching-of-programs-on-linux-platform/8255487#8255487
*/
#if defined(__aarch64__)
int main(void) {}
#else
#define _XOPEN_SOURCE 700
#include <errno.h>
#include <linux/cn_proc.h>
#include <linux/connector.h>
#include <linux/netlink.h>
#include <signal.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <unistd.h>
static volatile bool need_exit = false;
static int nl_connect()
{
int rc;
int nl_sock;
struct sockaddr_nl sa_nl;
nl_sock = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);
if (nl_sock == -1) {
perror("socket");
return -1;
}
sa_nl.nl_family = AF_NETLINK;
sa_nl.nl_groups = CN_IDX_PROC;
sa_nl.nl_pid = getpid();
rc = bind(nl_sock, (struct sockaddr *)&sa_nl, sizeof(sa_nl));
if (rc == -1) {
perror("bind");
close(nl_sock);
return -1;
}
return nl_sock;
}
static int set_proc_ev_listen(int nl_sock, bool enable)
{
int rc;
struct __attribute__ ((aligned(NLMSG_ALIGNTO))) {
struct nlmsghdr nl_hdr;
struct __attribute__ ((__packed__)) {
struct cn_msg cn_msg;
enum proc_cn_mcast_op cn_mcast;
};
} nlcn_msg;
memset(&nlcn_msg, 0, sizeof(nlcn_msg));
nlcn_msg.nl_hdr.nlmsg_len = sizeof(nlcn_msg);
nlcn_msg.nl_hdr.nlmsg_pid = getpid();
nlcn_msg.nl_hdr.nlmsg_type = NLMSG_DONE;
nlcn_msg.cn_msg.id.idx = CN_IDX_PROC;
nlcn_msg.cn_msg.id.val = CN_VAL_PROC;
nlcn_msg.cn_msg.len = sizeof(enum proc_cn_mcast_op);
nlcn_msg.cn_mcast = enable ? PROC_CN_MCAST_LISTEN : PROC_CN_MCAST_IGNORE;
rc = send(nl_sock, &nlcn_msg, sizeof(nlcn_msg), 0);
if (rc == -1) {
perror("netlink send");
return -1;
}
return 0;
}
static int handle_proc_ev(int nl_sock)
{
int rc;
struct __attribute__ ((aligned(NLMSG_ALIGNTO))) {
struct nlmsghdr nl_hdr;
struct __attribute__ ((__packed__)) {
struct cn_msg cn_msg;
struct proc_event proc_ev;
};
} nlcn_msg;
while (!need_exit) {
rc = recv(nl_sock, &nlcn_msg, sizeof(nlcn_msg), 0);
if (rc == 0) {
return 0;
} else if (rc == -1) {
if (errno == EINTR) continue;
perror("netlink recv");
return -1;
}
switch (nlcn_msg.proc_ev.what) {
case PROC_EVENT_NONE:
printf("set mcast listen ok\n");
break;
case PROC_EVENT_FORK:
printf("fork: parent tid=%d pid=%d -> child tid=%d pid=%d\n",
nlcn_msg.proc_ev.event_data.fork.parent_pid,
nlcn_msg.proc_ev.event_data.fork.parent_tgid,
nlcn_msg.proc_ev.event_data.fork.child_pid,
nlcn_msg.proc_ev.event_data.fork.child_tgid);
break;
case PROC_EVENT_EXEC:
printf("exec: tid=%d pid=%d\n",
nlcn_msg.proc_ev.event_data.exec.process_pid,
nlcn_msg.proc_ev.event_data.exec.process_tgid);
break;
case PROC_EVENT_UID:
printf("uid change: tid=%d pid=%d from %d to %d\n",
nlcn_msg.proc_ev.event_data.id.process_pid,
nlcn_msg.proc_ev.event_data.id.process_tgid,
nlcn_msg.proc_ev.event_data.id.r.ruid,
nlcn_msg.proc_ev.event_data.id.e.euid);
break;
case PROC_EVENT_GID:
printf("gid change: tid=%d pid=%d from %d to %d\n",
nlcn_msg.proc_ev.event_data.id.process_pid,
nlcn_msg.proc_ev.event_data.id.process_tgid,
nlcn_msg.proc_ev.event_data.id.r.rgid,
nlcn_msg.proc_ev.event_data.id.e.egid);
break;
case PROC_EVENT_EXIT:
printf("exit: tid=%d pid=%d exit_code=%d\n",
nlcn_msg.proc_ev.event_data.exit.process_pid,
nlcn_msg.proc_ev.event_data.exit.process_tgid,
nlcn_msg.proc_ev.event_data.exit.exit_code);
break;
default:
printf("unhandled proc event\n");
break;
}
}
return 0;
}
static void on_sigint(__attribute__ ((unused)) int unused)
{
need_exit = true;
}
int main(void)
{
int nl_sock;
int rc = EXIT_SUCCESS;
signal(SIGINT, &on_sigint);
siginterrupt(SIGINT, true);
nl_sock = nl_connect();
if (nl_sock == -1)
exit(EXIT_FAILURE);
rc = set_proc_ev_listen(nl_sock, true);
if (rc == -1) {
rc = EXIT_FAILURE;
goto out;
}
rc = handle_proc_ev(nl_sock);
if (rc == -1) {
rc = EXIT_FAILURE;
goto out;
}
set_proc_ev_listen(nl_sock, false);
out:
close(nl_sock);
exit(rc);
}
#endif

41
userland/rand_check.c Normal file
View File

@@ -0,0 +1,41 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#rand_check-out */
#include <inttypes.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
int bss = 0;
int data = 1;
int main(__attribute__((unused)) int argc, char **argv) {
int i, *ip;
uint64_t uint64;
FILE *fp;
/* Loaded addresses. */
printf("&i = %p\n", (void *)&i);
printf("&argv[0] = %p\n", (void *)&argv[0]);
printf("&main = %p\n", (void *)(intptr_t)main);
printf("&bss = %p\n", (void *)&bss);
printf("&data = %p\n", (void *)&data);
/* Misc syscalls. */
printf("time(NULL) = %ju\n", (uintmax_t)time(NULL));
printf("pid = %ju\n", (uintmax_t)getpid());
/* malloc */
ip = malloc(sizeof(*ip));
printf("&malloc = %p\n", (void *)ip);
free(ip);
/* /dev/urandom */
fp = fopen("/dev/urandom", "rb");
fread(&uint64, sizeof(uint64), 1, fp);
printf("/dev/urandom = %" PRIx64 "\n", uint64);
fclose(fp);
}

20
userland/rdtsc.c Normal file
View File

@@ -0,0 +1,20 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#rdtsc */
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#if defined(__i386__) || defined(__x86_64__)
#include <x86intrin.h>
#endif
int main(void) {
uintmax_t val;
#if defined(__i386__) || defined(__x86_64__)
val = __rdtsc();
#else
val = 0;
#endif
printf("%ju\n", val);
return EXIT_SUCCESS;
}

14
userland/ring0.c Normal file
View File

@@ -0,0 +1,14 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#ring0 */
#include <stdio.h>
#include <stdlib.h>
#include "../include/ring0.h"
int main(void) {
#if defined(__x86_64__) || defined(__i386__)
Ring0Regs ring0_regs;
ring0_get_control_regs(&ring0_regs);
#endif
return EXIT_SUCCESS;
}

View File

@@ -0,0 +1,42 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#gdb-step-debug-multicore */
#define _GNU_SOURCE
#include <assert.h>
#include <sched.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
void print_affinity() {
cpu_set_t mask;
long nproc, i;
if (sched_getaffinity(0, sizeof(cpu_set_t), &mask) == -1) {
perror("sched_getaffinity");
assert(false);
} else {
nproc = sysconf(_SC_NPROCESSORS_ONLN);
printf("sched_getaffinity = ");
for (i = 0; i < nproc; i++) {
printf("%d ", CPU_ISSET(i, &mask));
}
printf("\n");
}
}
int main(void) {
cpu_set_t mask;
print_affinity();
printf("sched_getcpu = %d\n", sched_getcpu());
CPU_ZERO(&mask);
CPU_SET(0, &mask);
if (sched_setaffinity(0, sizeof(cpu_set_t), &mask) == -1) {
perror("sched_setaffinity");
assert(false);
}
print_affinity();
printf("sched_getcpu = %d\n", sched_getcpu());
return EXIT_SUCCESS;
}

View File

@@ -0,0 +1,51 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#gdb-step-debug-multicore */
#define _GNU_SOURCE
#include <assert.h>
#include <pthread.h>
#include <sched.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
void* main_thread_0(void *arg) {
int i;
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(*((int*)arg), &mask);
sched_setaffinity(0, sizeof(cpu_set_t), &mask);
i = 0;
while (true) {
printf("0 %d\n", i);
sleep(1);
i++;
}
return NULL;
}
void* main_thread_1(void *arg) {
int i;
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(*((int*)arg), &mask);
sched_setaffinity(1, sizeof(cpu_set_t), &mask);
i = 0;
while (true) {
printf("1 %d\n", i);
sleep(1);
i++;
}
return NULL;
}
int main(void) {
enum NUM_THREADS {NUM_THREADS = 2};
pthread_t threads[NUM_THREADS];
int thread_args[NUM_THREADS];
pthread_create(&threads[0], NULL, main_thread_0, (void*)&thread_args[0]);
pthread_create(&threads[1], NULL, main_thread_1, (void*)&thread_args[1]);
pthread_join(threads[0], NULL);
pthread_join(threads[1], NULL);
return EXIT_SUCCESS;
}

10
userland/sleep_forever.c Normal file
View File

@@ -0,0 +1,10 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#sleep_forever-out */
#include <stdio.h>
#include <unistd.h>
int main(void) {
puts(__FILE__);
while (1)
sleep(0xFFFFFFFF);
}

13
userland/time_boot.c Normal file
View File

@@ -0,0 +1,13 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#time_boot-out */
#include <stdio.h>
#include <unistd.h>
int main(void) {
FILE *fp;
fp = fopen("/dev/kmsg", "w");
fputs(__FILE__ "\n", fp);
fclose(fp);
while (1)
sleep(0xFFFFFFFF);
}

111
userland/uio_read.c Normal file
View File

@@ -0,0 +1,111 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#uio */
#if 1
/* Adapted from: https://yurovsky.github.io/2014/10/10/linux-uio-gpio-interrupt */
#define _XOPEN_SOURCE 700
#include <fcntl.h> /* open */
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h> /* write */
#include <assert.h>
#include <sys/mman.h>
int main(int argc, char **argv)
{
char *dev = "/dev/uio0";
if (argc > 1) {
dev = argv[1];
exit(EXIT_FAILURE);
}
int fd = open(dev, O_RDWR);
if (fd < 0) {
perror("open");
exit(EXIT_FAILURE);
}
/* TODO not supported by this kernel module? */
/*int *addr = mmap(NULL, sysconf(_SC_PAGE_SIZE), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);*/
/*if (addr == MAP_FAILED) {*/
/*perror("mmap");*/
/*assert(0);*/
/*}*/
/**addr = 0x12345678;*/
while (1) {
uint32_t info = 1;
size_t nb = write(fd, &info, sizeof(info));
if (nb < sizeof(info)) {
perror("write");
close(fd);
exit(EXIT_FAILURE);
}
nb = read(fd, &info, sizeof(info));
if (nb == sizeof(info)) {
printf(__FILE__ " read = %u\n", info);
}
}
}
#else
/* Ripped from the kernel docs. */
#define _XOPEN_SOURCE 700
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <unistd.h>
int main(void)
{
int uiofd;
int configfd;
int err;
int i;
unsigned icount;
unsigned char command_high;
uiofd = open("/dev/uio0", O_RDONLY);
if (uiofd < 0) {
perror("uio open:");
return errno;
}
configfd = open("/sys/class/uio/uio0/device/config", O_RDWR);
if (configfd < 0) {
perror("config open:");
return errno;
}
err = pread(configfd, &command_high, 1, 5);
if (err != 1) {
perror("command config read:");
return errno;
}
command_high &= ~0x4;
for(i = 0;; ++i) {
fprintf(stderr, "Interrupts: %d\n", icount);
err = pwrite(configfd, &command_high, 1, 5);
if (err != 1) {
perror("config write:");
break;
}
err = read(uiofd, &icount, 4);
if (err != 4) {
perror("uio read:");
break;
}
}
return errno;
}
#endif

View File

@@ -0,0 +1,21 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#userland-physical-address-experiments */
#define _XOPEN_SOURCE 700
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
enum { I0 = 0x12345678 };
static volatile uint32_t i = I0;
int main(void) {
printf("vaddr %p\n", (void *)&i);
printf("pid %ju\n", (uintmax_t)getpid());
while (i == I0) {
sleep(1);
}
printf("i %jx\n", (uintmax_t)i);
return EXIT_SUCCESS;
}

View File

@@ -0,0 +1,26 @@
/* https://github.com/cirosantilli/linux-kernel-module-cheat#userland-physical-address-experiments */
#define _XOPEN_SOURCE 700
#include <stdio.h> /* printf */
#include <stdlib.h> /* EXIT_SUCCESS, EXIT_FAILURE, strtoull */
#include "common.h" /* virt_to_phys_user */
int main(int argc, char **argv)
{
pid_t pid;
uintptr_t vaddr, paddr = 0;
if (argc < 3) {
printf("Usage: %s pid vaddr\n", argv[0]);
return EXIT_FAILURE;
}
pid = strtoull(argv[1], NULL, 0);
vaddr = strtoull(argv[2], NULL, 0);
if (virt_to_phys_user(&paddr, pid, vaddr)) {
fprintf(stderr, "error: virt_to_phys_user\n");
return EXIT_FAILURE;
};
printf("0x%jx\n", (uintmax_t)paddr);
return EXIT_SUCCESS;
}