1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-23 02:35:57 +01:00
Files
libtins/src/sniffer.cpp
2018-02-21 09:47:09 -08:00

531 lines
15 KiB
C++

/*
* Copyright (c) 2017, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifdef _WIN32
#define TINS_PREFIX_INTERFACE(x) ("\\Device\\NPF_" + x)
#else // _WIN32
#define TINS_PREFIX_INTERFACE(x) (x)
#endif // _WIN32
#include <tins/sniffer.h>
#include <tins/dot11/dot11_base.h>
#include <tins/ethernetII.h>
#include <tins/radiotap.h>
#include <tins/loopback.h>
#include <tins/rawpdu.h>
#include <tins/dot3.h>
#include <tins/pktap.h>
#include <tins/sll.h>
#include <tins/ppi.h>
#include <tins/ip.h>
#include <tins/ipv6.h>
#include <tins/detail/pdu_helpers.h>
using std::string;
namespace Tins {
BaseSniffer::BaseSniffer()
: handle_(0), mask_(0), extract_raw_(false) {
}
BaseSniffer::~BaseSniffer() {
if (handle_) {
pcap_close(handle_);
}
}
void BaseSniffer::set_pcap_handle(pcap_t* pcap_handle) {
handle_ = pcap_handle;
}
pcap_t* BaseSniffer::get_pcap_handle() {
return handle_;
}
const pcap_t* BaseSniffer::get_pcap_handle() const {
return handle_;
}
void BaseSniffer::set_if_mask(bpf_u_int32 if_mask) {
mask_ = if_mask;
}
bpf_u_int32 BaseSniffer::get_if_mask() const {
return mask_;
}
struct sniff_data {
struct timeval tv;
PDU* pdu;
bool packet_processed;
sniff_data() : tv(), pdu(0), packet_processed(true) { }
};
template<typename T>
T* safe_alloc(const u_char* bytes, bpf_u_int32 len) {
try {
return new T((const uint8_t*)bytes, len);
}
catch (malformed_packet&) {
return 0;
}
}
template<typename T>
void sniff_loop_handler(u_char* user, const struct pcap_pkthdr* h, const u_char* bytes) {
sniff_data* data = (sniff_data*)user;
data->packet_processed = true;
data->tv = h->ts;
data->pdu = safe_alloc<T>(bytes, h->caplen);
}
void sniff_loop_eth_handler(u_char* user, const struct pcap_pkthdr* h, const u_char* bytes) {
sniff_data* data = (sniff_data*)user;
data->packet_processed = true;
data->tv = h->ts;
if (Internals::is_dot3((const uint8_t*)bytes, h->caplen)) {
data->pdu = safe_alloc<Dot3>((const uint8_t*)bytes, h->caplen);
}
else {
data->pdu = safe_alloc<EthernetII>((const uint8_t*)bytes, h->caplen);
}
}
void sniff_loop_raw_handler(u_char* user, const struct pcap_pkthdr* h, const u_char* bytes) {
TINS_BEGIN_PACK
struct base_ip_header {
#if TINS_IS_LITTLE_ENDIAN
uint8_t ihl:4,
version:4;
#else
uint8_t version:4,
ihl:4;
#endif
} TINS_END_PACK;
sniff_data* data = (sniff_data*)user;
const base_ip_header* header = (const base_ip_header*)bytes;
data->packet_processed = true;
data->tv = h->ts;
switch (header->version) {
case 4:
data->pdu = safe_alloc<IP>((const uint8_t*)bytes, h->caplen);
break;
case 6:
data->pdu = safe_alloc<IPv6>((const uint8_t*)bytes, h->caplen);
break;
};
}
#ifdef TINS_HAVE_DOT11
void sniff_loop_dot11_handler(u_char* user, const struct pcap_pkthdr* h, const u_char* bytes) {
sniff_data* data = (sniff_data*)user;
data->packet_processed = true;
data->tv = h->ts;
try {
data->pdu = Dot11::from_bytes(bytes, h->caplen);
}
catch(malformed_packet&) {
}
}
#endif
PtrPacket BaseSniffer::next_packet() {
sniff_data data;
const int iface_type = pcap_datalink(handle_);
pcap_handler handler = 0;
if (extract_raw_) {
handler = &sniff_loop_handler<RawPDU>;
}
else {
switch (iface_type) {
case DLT_EN10MB:
handler = &sniff_loop_eth_handler;
break;
case DLT_NULL:
handler = &sniff_loop_handler<Tins::Loopback>;
break;
case DLT_LINUX_SLL:
handler = &sniff_loop_handler<SLL>;
break;
case DLT_PPI:
handler = &sniff_loop_handler<PPI>;
break;
case DLT_RAW:
handler = &sniff_loop_raw_handler;
break;
// Dot11 related protocols
#ifdef TINS_HAVE_DOT11
case DLT_IEEE802_11_RADIO:
handler = &sniff_loop_handler<RadioTap>;
break;
case DLT_IEEE802_11:
handler = &sniff_loop_dot11_handler;
break;
#else
case DLT_IEEE802_11_RADIO:
case DLT_IEEE802_11:
throw protocol_disabled();
#endif // TINS_HAVE_DOT11
#ifdef DLT_PKTAP
case DLT_PKTAP:
handler = &sniff_loop_handler<PKTAP>;
break;
#endif // DLT_PKTAP
default:
throw unknown_link_type();
}
}
// keep calling pcap_loop until a well-formed packet is found.
while (data.pdu == 0 && data.packet_processed) {
data.packet_processed = false;
if (pcap_sniffing_method_(handle_, 1, handler, (u_char*)&data) < 0) {
return PtrPacket(0, Timestamp());
}
}
return PtrPacket(data.pdu, data.tv);
}
void BaseSniffer::set_extract_raw_pdus(bool value) {
extract_raw_ = value;
}
void BaseSniffer::set_pcap_sniffing_method(PcapSniffingMethod method) {
if (method == 0) {
throw std::runtime_error("Sniffing method cannot be null");
}
pcap_sniffing_method_ = method;
}
void BaseSniffer::stop_sniff() {
pcap_breakloop(handle_);
}
int BaseSniffer::get_fd() {
#ifndef _WIN32
return pcap_get_selectable_fd(handle_);
#else
throw unsupported_function();
#endif // _WIN32
}
int BaseSniffer::link_type() const {
return pcap_datalink(handle_);
}
BaseSniffer::iterator BaseSniffer::begin() {
return iterator(this);
}
BaseSniffer::iterator BaseSniffer::end() {
return iterator(0);
}
bool BaseSniffer::set_filter(const string& filter) {
bpf_program prog;
if (pcap_compile(handle_, &prog, filter.c_str(), 0, mask_) == -1) {
return false;
}
bool result = pcap_setfilter(handle_, &prog) != -1;
pcap_freecode(&prog);
return result;
}
void BaseSniffer::set_timeout(int ms) {
pcap_set_timeout(handle_, ms);
}
bool BaseSniffer::set_direction(pcap_direction_t d) {
bool result = pcap_setdirection(handle_, d) != -1;
return result;
}
// ****************************** Sniffer ******************************
Sniffer::Sniffer(const string& device) {
init(device, SnifferConfiguration());
}
Sniffer::Sniffer(const string& device, const SnifferConfiguration& configuration) {
init(device, configuration);
}
Sniffer::Sniffer(const string& device,
unsigned max_packet_size,
bool promisc,
const string& filter,
bool rfmon) {
SnifferConfiguration configuration;
configuration.set_snap_len(max_packet_size);
configuration.set_promisc_mode(promisc);
configuration.set_filter(filter);
configuration.set_rfmon(rfmon);
init(device, configuration);
}
Sniffer::Sniffer(const string& device,
promisc_type promisc,
const string& filter,
bool rfmon) {
SnifferConfiguration configuration;
configuration.set_promisc_mode(promisc == PROMISC);
configuration.set_filter(filter);
configuration.set_rfmon(rfmon);
init(device, configuration);
}
void Sniffer::init(const string& device, const SnifferConfiguration& configuration) {
char error[PCAP_ERRBUF_SIZE];
pcap_t* phandle = pcap_create(TINS_PREFIX_INTERFACE(device).c_str(), error);
if (!phandle) {
throw pcap_error(error);
}
set_pcap_handle(phandle);
// Set the netmask if we are able to find it.
bpf_u_int32 ip, if_mask;
if (pcap_lookupnet(TINS_PREFIX_INTERFACE(device).c_str(), &ip, &if_mask, error) == 0) {
set_if_mask(if_mask);
}
// Configure the sniffer's attributes prior to activation.
configuration.configure_sniffer_pre_activation(*this);
// Finally, activate the pcap. In case of error, throw
if (pcap_activate(get_pcap_handle()) < 0) {
throw pcap_error(pcap_geterr(get_pcap_handle()));
}
// Configure the sniffer's attributes after activation.
configuration.configure_sniffer_post_activation(*this);
}
void Sniffer::set_snap_len(unsigned snap_len) {
if (pcap_set_snaplen(get_pcap_handle(), snap_len)) {
throw pcap_error(pcap_geterr(get_pcap_handle()));
}
}
void Sniffer::set_buffer_size(unsigned buffer_size) {
if (pcap_set_buffer_size(get_pcap_handle(), buffer_size)) {
throw pcap_error(pcap_geterr(get_pcap_handle()));
}
}
void Sniffer::set_promisc_mode(bool promisc_enabled) {
if (pcap_set_promisc(get_pcap_handle(), promisc_enabled)) {
throw pcap_error(pcap_geterr(get_pcap_handle()));
}
}
void Sniffer::set_immediate_mode(bool enabled) {
// As of libpcap version 1.5.0 this function exists. Before, it was
// technically always immediate mode since capture used TPACKET_V1/2
// which doesn't do packet buffering.
#ifdef HAVE_PCAP_IMMEDIATE_MODE
if (pcap_set_immediate_mode(get_pcap_handle(), enabled)) {
throw pcap_error(pcap_geterr(get_pcap_handle()));
}
#else
Internals::unused(enabled);
#endif // HAVE_PCAP_IMMEDIATE_MODE
}
void Sniffer::set_timestamp_precision(int value) {
// This function exists as of libpcap version 1.5.0.
#ifdef HAVE_PCAP_TIMESTAMP_PRECISION
int result = pcap_set_tstamp_precision(get_pcap_handle(), value);
if (result == PCAP_ERROR_TSTAMP_PRECISION_NOTSUP) {
throw pcap_error("Timestamp precision not supported");
}
#else
Internals::unused(value);
#endif // HAVE_PCAP_TIMESTAMP_PRECISION
}
void Sniffer::set_rfmon(bool rfmon_enabled) {
#ifndef _WIN32
if (pcap_can_set_rfmon(get_pcap_handle()) == 1) {
if (pcap_set_rfmon(get_pcap_handle(), rfmon_enabled)) {
throw pcap_error(pcap_geterr(get_pcap_handle()));
}
}
#endif
}
// **************************** FileSniffer ****************************
FileSniffer::FileSniffer(const string& file_name,
const SnifferConfiguration& configuration) {
char error[PCAP_ERRBUF_SIZE];
pcap_t* phandle = pcap_open_offline(file_name.c_str(), error);
if (!phandle) {
throw pcap_error(error);
}
set_pcap_handle(phandle);
// Configure the sniffer
configuration.configure_sniffer_pre_activation(*this);
}
FileSniffer::FileSniffer(const string& file_name, const string& filter) {
SnifferConfiguration config;
config.set_filter(filter);
char error[PCAP_ERRBUF_SIZE];
pcap_t* phandle = pcap_open_offline(file_name.c_str(), error);
if (!phandle) {
throw pcap_error(error);
}
set_pcap_handle(phandle);
// Configure the sniffer
config.configure_sniffer_pre_activation(*this);
}
// ************************ SnifferConfiguration ************************
const unsigned SnifferConfiguration::DEFAULT_SNAP_LEN = 65535;
const unsigned SnifferConfiguration::DEFAULT_TIMEOUT = 1000;
SnifferConfiguration::SnifferConfiguration()
: flags_(0), snap_len_(DEFAULT_SNAP_LEN), buffer_size_(0),
pcap_sniffing_method_(pcap_loop), timeout_(DEFAULT_TIMEOUT), promisc_(false),
rfmon_(false), immediate_mode_(false), direction_(PCAP_D_INOUT),
timestamp_precision_(0) {
}
void SnifferConfiguration::configure_sniffer_pre_activation(Sniffer& sniffer) const {
sniffer.set_snap_len(snap_len_);
sniffer.set_timeout(timeout_);
sniffer.set_pcap_sniffing_method(pcap_sniffing_method_);
if ((flags_ & BUFFER_SIZE) != 0) {
sniffer.set_buffer_size(buffer_size_);
}
if ((flags_ & PROMISCUOUS) != 0) {
sniffer.set_promisc_mode(promisc_);
}
if ((flags_ & RFMON) != 0) {
sniffer.set_rfmon(rfmon_);
}
if ((flags_ & IMMEDIATE_MODE) != 0) {
sniffer.set_immediate_mode(immediate_mode_);
}
if ((flags_ & TIMESTAMP_PRECISION) != 0) {
sniffer.set_timestamp_precision(timestamp_precision_);
}
}
void SnifferConfiguration::configure_sniffer_pre_activation(FileSniffer& sniffer) const {
if ((flags_ & PACKET_FILTER) != 0) {
if (!sniffer.set_filter(filter_)) {
throw invalid_pcap_filter(pcap_geterr(sniffer.get_pcap_handle()));
}
}
sniffer.set_pcap_sniffing_method(pcap_sniffing_method_);
}
void SnifferConfiguration::configure_sniffer_post_activation(Sniffer& sniffer) const {
if ((flags_ & PACKET_FILTER) != 0) {
if (!sniffer.set_filter(filter_)) {
throw invalid_pcap_filter(pcap_geterr(sniffer.get_pcap_handle()));
}
}
// TODO: see how to actually do this on winpcap
#ifndef _WIN32
if ((flags_ & DIRECTION) != 0) {
if (!sniffer.set_direction(direction_)) {
throw pcap_error(pcap_geterr(sniffer.get_pcap_handle()));
}
}
#endif // _WIN32
}
void SnifferConfiguration::set_snap_len(unsigned snap_len) {
snap_len_ = snap_len;
}
void SnifferConfiguration::set_buffer_size(unsigned buffer_size) {
flags_ |= BUFFER_SIZE;
buffer_size_ = buffer_size;
}
void SnifferConfiguration::set_promisc_mode(bool enabled) {
flags_ |= PROMISCUOUS;
promisc_ = enabled;
}
void SnifferConfiguration::set_filter(const string& filter) {
flags_ |= PACKET_FILTER;
filter_ = filter;
}
void SnifferConfiguration::set_pcap_sniffing_method(BaseSniffer::PcapSniffingMethod method) {
flags_ |= PCAP_SNIFFING_METHOD;
pcap_sniffing_method_ = method;
}
void SnifferConfiguration::set_rfmon(bool enabled) {
flags_ |= RFMON;
rfmon_ = enabled;
}
void SnifferConfiguration::set_timeout(unsigned timeout) {
timeout_ = timeout;
}
void SnifferConfiguration::set_immediate_mode(bool enabled) {
flags_ |= IMMEDIATE_MODE;
immediate_mode_ = enabled;
}
void SnifferConfiguration::set_timestamp_precision(int value) {
flags_ |= TIMESTAMP_PRECISION;
timestamp_precision_ = value;
}
void SnifferConfiguration::set_direction(pcap_direction_t direction) {
direction_ = direction;
flags_ |= DIRECTION;
}
} // Tins