1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-23 02:35:57 +01:00
Files
libtins/include/tins/crypto.h
Matias Fontanini d84f10cf08 Code cleanup and use same syntax on the entire project
Initial code cleanup

More code cleanup

Cleanup more code

Cleanup Dot11 code

Fix OSX build issue

Cleanup examples

Fix ref and pointer declaration syntax

Fix braces
2016-01-09 10:01:58 -08:00

542 lines
16 KiB
C++

/*
* Copyright (c) 2014, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "config.h"
#if !defined(TINS_CRYPTO_H) && defined(HAVE_DOT11)
#define TINS_CRYPTO_H
#include <map>
#include <string>
#include <algorithm>
#include <vector>
#include "utils.h"
#include "snap.h"
#include "rawpdu.h"
#include "macros.h"
#include "handshake_capturer.h"
namespace Tins {
class PDU;
class Dot11;
class Dot11Data;
namespace Crypto {
struct RC4Key;
#ifdef HAVE_WPA2_DECRYPTION
namespace WPA2 {
/**
* \brief Class that represents the keys used to decrypt a session.
*/
class TINS_API SessionKeys {
public:
/**
* The size of the Pairwise Master Key.
*/
static const size_t PMK_SIZE;
/**
* The size of the Pairwise Transient Key.
*/
static const size_t PTK_SIZE;
/**
* The type used to hold the PTK (this has to be PTK_SIZE bytes long).
*/
typedef std::vector<uint8_t> ptk_type;
/**
* The type used to hold the PMK (this has to be PMK_SIZE bytes long).
*/
typedef std::vector<uint8_t> pmk_type;
/**
* Default constructs a SessionKeys object.
*/
SessionKeys();
/**
* \brief Constructs an instance using the provided PTK and a flag
* indicating whether it should use ccmp.
*
* \param ptk The PTK to use.
* \param is_ccmp Indicates whether to use CCMP to decrypt this traffic.
*/
SessionKeys(const ptk_type& ptk, bool is_ccmp);
/**
* \brief Constructs an instance using a handshake and a PMK.
*
* This will internally construct the PTK from the input parameters.
*
* \param hs The handshake to use.
* \param pmk The PMK to use.
*/
SessionKeys(const RSNHandshake& hs, const pmk_type& pmk);
/**
* \brief Decrypts a unicast packet.
*
* \param dot11 The encrypted packet to decrypt.
* \param raw The raw layer on the packet to decrypt.
* \return A SNAP layer containing the decrypted traffic or a null pointer
* if decryption failed.
*/
SNAP* decrypt_unicast(const Dot11Data& dot11, RawPDU& raw) const;
/**
* \brief Gets the PTK for this session keys.
* \return The Pairwise Transcient Key.
*/
const ptk_type& get_ptk() const;
/**
* \brief Indicates whether CCMP is used to decrypt packets
* /return true iff CCMP is used.
*/
bool uses_ccmp() const;
private:
SNAP* ccmp_decrypt_unicast(const Dot11Data& dot11, RawPDU& raw) const;
SNAP* tkip_decrypt_unicast(const Dot11Data& dot11, RawPDU& raw) const;
RC4Key generate_rc4_key(const Dot11Data& dot11, const RawPDU& raw) const;
ptk_type ptk_;
bool is_ccmp_;
};
/**
* \brief Represents a WPA2 supplicant's data.
*
* Objects of this class can be given the pre-shared key and the SSID
* of some access point, and this will generate the Pairwise Master Key
* from those parameters.
*/
class TINS_API SupplicantData {
public:
/**
* The type used to store the PMK.
*/
typedef SessionKeys::pmk_type pmk_type;
/**
* \brief Constructs a SupplicantData.
* \param psk The pre-shared key.
* \param ssid The access point's SSID.
*/
SupplicantData(const std::string& psk, const std::string& ssid);
/**
* \brief Getter for the PMK.
* \return The generated PMK.
*/
const pmk_type& pmk() const;
private:
pmk_type pmk_;
};
} // WPA2
#endif // HAVE_WPA2_DECRYPTION
/**
* \brief RC4 Key abstraction.
*/
struct RC4Key {
static const size_t data_size = 256;
/**
* \brief Initializes the key using the provided iterator range.
*
* \param start The start of the range.
* \param end The end of the range.
*/
template<typename ForwardIterator>
RC4Key(ForwardIterator start, ForwardIterator end);
/**
* The actual key data.
*/
uint8_t data[data_size];
};
/**
* \brief Decrypts WEP-encrypted traffic.
*/
class TINS_API WEPDecrypter {
public:
typedef HWAddress<6> address_type;
/**
* \brief Constructs a WEPDecrypter object.
*/
WEPDecrypter();
/**
* \brief Adds a decryption password.
*
* \param addr The access point's BSSID.
* \param password The password which will be used to decrypt
* packets sent from and to the AP identifier by the BSSID addr.
*/
void add_password(const address_type& addr, const std::string& password);
/**
* \brief Removes a decryption password
*
* \param addr The BSSID of the access point.
*/
void remove_password(const address_type& addr);
/**
* \brief Decrypts the provided PDU.
*
* A Dot11Data PDU is looked up inside the provided PDU chain.
* If no such PDU exists or there is no password associated
* with the Dot11 packet's BSSID, then the PDU is left intact.
*
* Otherwise, the packet is decrypted using the given password.
* If the CRC found after decrypting is invalid, false is
* returned.
*
* \return false if no decryption was performed or decryption
* failed, true otherwise.
*/
bool decrypt(PDU& pdu);
private:
typedef std::map<address_type, std::string> passwords_type;
PDU* decrypt(RawPDU& raw, const std::string& password);
passwords_type passwords_;
std::vector<uint8_t> key_buffer_;
};
#ifdef HAVE_WPA2_DECRYPTION
/**
* \brief Decrypts WPA2-encrypted traffic.
*
* This class takes valid PSK and SSID tuples, captures client handshakes,
* and decrypts their traffic afterwards.
*/
class TINS_API WPA2Decrypter {
public:
/*
* \brief The type used to store Dot11 addresses.
*/
typedef HWAddress<6> address_type;
/**
* \brief Represents a pair of mac addresses.
*
* This is used to identify a host and the access point to which
* it is connected. The first element in the pair will always de
* lower or equal than the second one, so that given any host and
* the access point it's connected to, we can uniquely identify
* it with an address pair.
*/
typedef std::pair<address_type, address_type> addr_pair;
/**
* \brief Maps an address pair to the session keys.
*
* This type associates an address pair (host, access point) with the
* session keys, as generated using the packets seen on a handshake.
*
* \sa addr_pair
*/
typedef std::map<addr_pair, WPA2::SessionKeys> keys_map;
/**
* \brief Adds an access points's information.
*
* This associates an SSID with a PSK, and allows the decryption of
* any BSSIDs that broadcast the same SSID.
*
* The decrypter will inspect beacon frames, looking for SSID tags
* that contain the given SSID.
*
* Note that using this overload, the decryption of data frames and
* handshake capturing will be disabled until any access point
* broadcasts the provided SSID(this shouldn't take long at all).
* If this is not the desired behaviour, then you should check out
* the ovther add_ap_data overload.
*
* \param psk The PSK associated with the SSID.
* \param ssid The network's SSID.
*/
void add_ap_data(const std::string& psk, const std::string& ssid);
/**
* \brief Adds a access points's information, including its BSSID.
*
* This overload can be used if the BSSID associated with this SSID is
* known beforehand. The addr parameter indicates which specific BSSID
* is associated to the SSID.
*
* Note that if any other access point broadcasts the provided SSID,
* it will be taken into account as well.
*
* \param psk The PSK associated with this SSID.
* \param ssid The network's SSID.
* \param addr The access point's BSSID.
*/
void add_ap_data(const std::string& psk,
const std::string& ssid,
const address_type& addr);
/**
* \brief Explicitly add decryption keys.
*
* This method associates a pair (host, access point) with the given decryption keys.
* All encrypted packets sent between the given addresses will be decrypted using the
* provided keys.
*
* This method shouldn't normally be required. The WPA2Decrypter will be waiting for
* handshakes and will automatically extract the session keys, decrypting all
* encrypted packets with them. You should only use this method if for some reason
* you know the actual keys being used (because you checked and stored the keys_map
* somewhere).
*
* The actual order of the addresses doesn't matter, this method will make sure
* they're sorted.
*
* \param addresses The address pair (host, access point) to associate.
* \param session_keys The keys to use when decrypting messages sent between the
* given addresses.
*/
void add_decryption_keys(const addr_pair& addresses,
const WPA2::SessionKeys& session_keys);
/**
* \brief Decrypts the provided PDU.
*
* A Dot11Data PDU is looked up inside the provided PDU chain.
* If no such PDU exists or no PSK was associated with the SSID
* broadcasted by the Dot11 packet's BSSID, or no EAPOL handshake
* was captured for the client involved in the communication,
* then the PDU is left intact.
*
* Otherwise, the packet is decrypted using the generated PTK.
* If the resulting MIC is invalid, then the packet is left intact.
*
* \return false if no decryption was performed, or the decryption
* failed, true otherwise.
*/
bool decrypt(PDU& pdu);
/**
* \brief Getter for the keys on this decrypter
*
* The returned map will be populated every time a new, complete, handshake
* is captured.
*
* \return The WPA2Decrypter keys map.
*/
const keys_map& get_keys() const;
private:
typedef std::map<std::string, WPA2::SupplicantData> pmks_map;
typedef std::map<address_type, WPA2::SupplicantData> bssids_map;
void try_add_keys(const Dot11Data& dot11, const RSNHandshake& hs);
addr_pair make_addr_pair(const address_type& addr1, const address_type& addr2) {
return (addr1 < addr2) ?
std::make_pair(addr1, addr2) :
std::make_pair(addr2, addr1);
}
addr_pair extract_addr_pair(const Dot11Data& dot11);
addr_pair extract_addr_pair_dst(const Dot11Data& dot11);
bssids_map::const_iterator find_ap(const Dot11Data& dot11);
void add_access_point(const std::string& ssid, const address_type& addr);
RSNHandshakeCapturer capturer_;
pmks_map pmks_;
bssids_map aps_;
keys_map keys_;
};
#endif // HAVE_WPA2_DECRYPTION
/**
* \brief Pluggable decrypter object which can be used to decrypt
* data on sniffing sessions.
*
* This class holds a decrypter object and a functor, and implements
* a suitable operator() to be used on BaseSniffer::sniff_loop, which
* decrypts packets and forwards them to the given functor.
*/
template<typename Functor, typename Decrypter>
class DecrypterProxy {
public:
/**
* The type of the functor object.
*/
typedef Functor functor_type;
/**
* The type of the decrypter object.
*/
typedef Decrypter decrypter_type;
/**
* \brief Constructs an object from a functor and a decrypter.
* \param func The functor to be used to forward decrypted
* packets.
* \param decrypter The decrypter which will be used to decrypt
* packets
*/
DecrypterProxy(const functor_type& func,
const decrypter_type& decr = decrypter_type());
/**
* \brief Retrieves a reference to the decrypter object.
*/
decrypter_type& decrypter();
/**
* \brief Retrieves a const reference to the decrypter object.
*/
const decrypter_type& decrypter() const;
/**
* \brief The operator() which decrypts packets and forwards
* them to the functor.
*/
bool operator() (PDU& pdu);
private:
Functor functor_;
decrypter_type decrypter_;
};
/**
* \brief Performs RC4 encription/decryption of the given byte range,
* using the provided key.
*
* The decrypted range will be copied to the OutputIterator provided.
*
* \param start The beginning of the range.
* \param start The end of the range.
* \param key The key to be used.
* \param output The iterator in which to write the output.
*/
template<typename ForwardIterator, typename OutputIterator>
void rc4(ForwardIterator start, ForwardIterator end, RC4Key& key, OutputIterator output);
/**
* \brief Wrapper function to create a DecrypterProxy using a
* WEPDecrypter as the Decrypter template parameter.
*
* \param functor The functor to be forwarded to the DecrypterProxy
* constructor.
*/
template<typename Functor>
DecrypterProxy<Functor, WEPDecrypter> make_wep_decrypter_proxy(const Functor& functor);
#ifdef HAVE_WPA2_DECRYPTION
/**
* \brief Wrapper function to create a DecrypterProxy using a
* WPA2Decrypter as the Decrypter template parameter.
*
* \param functor The functor to be forwarded to the DecrypterProxy
* constructor.
*/
template<typename Functor>
DecrypterProxy<Functor, WPA2Decrypter> make_wpa2_decrypter_proxy(const Functor& functor) {
return DecrypterProxy<Functor, WPA2Decrypter>(functor);
}
#endif // HAVE_WPA2_DECRYPTION
// Implementation section
// DecrypterProxy
template<typename Functor, typename Decrypter>
DecrypterProxy<Functor, Decrypter>::DecrypterProxy(const functor_type& func,
const decrypter_type& decr)
: functor_(func), decrypter_(decr) {
}
template<typename Functor, typename Decrypter>
typename DecrypterProxy<Functor, Decrypter>::decrypter_type &
DecrypterProxy<Functor, Decrypter>::decrypter() {
return decrypter_;
}
template<typename Functor, typename Decrypter>
const typename DecrypterProxy<Functor, Decrypter>::decrypter_type &
DecrypterProxy<Functor, Decrypter>::decrypter() const {
return decrypter_;
}
template<typename Functor, typename Decrypter>
bool DecrypterProxy<Functor, Decrypter>::operator() (PDU& pdu) {
return decrypter_.decrypt(pdu) ? functor_(pdu) : true;
}
template<typename Functor>
DecrypterProxy<Functor, WEPDecrypter> make_wep_decrypter_proxy(const Functor& functor) {
return DecrypterProxy<Functor, WEPDecrypter>(functor);
}
// RC4 stuff
template<typename ForwardIterator>
RC4Key::RC4Key(ForwardIterator start, ForwardIterator end) {
for (size_t i = 0; i < data_size; ++i) {
data[i] = static_cast<uint8_t>(i);
}
size_t j = 0;
ForwardIterator iter = start;
for (size_t i = 0; i < data_size; ++i) {
j = (j + data[i] + *iter++) % 256;
if(iter == end) {
iter = start;
}
std::swap(data[i], data[j]);
}
}
template<typename ForwardIterator, typename OutputIterator>
void rc4(ForwardIterator start, ForwardIterator end, RC4Key& key, OutputIterator output) {
size_t i = 0, j = 0;
while (start != end) {
i = (i + 1) % RC4Key::data_size;
j = (j + key.data[i]) % RC4Key::data_size;
std::swap(key.data[i], key.data[j]);
*output++ = *start++ ^ key.data[(key.data[i] + key.data[j]) % RC4Key::data_size];
}
}
} // Crypto
} // Tins
#endif // TINS_CRYPTO_H