1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-23 02:35:57 +01:00
Files
libtins/include/tins/hw_address.h
Matias Fontanini d84f10cf08 Code cleanup and use same syntax on the entire project
Initial code cleanup

More code cleanup

Cleanup more code

Cleanup Dot11 code

Fix OSX build issue

Cleanup examples

Fix ref and pointer declaration syntax

Fix braces
2016-01-09 10:01:58 -08:00

432 lines
12 KiB
C++

/*
* Copyright (c) 2014, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef TINS_HWADDRESS_H
#define TINS_HWADDRESS_H
#include <stdint.h>
#include <stdexcept>
#include <iterator>
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <sstream>
#include "cxxstd.h"
namespace Tins {
/**
* \class HWAddress
* \brief Represents a hardware address.
*
* This class represents a hardware (MAC) address. It can
* be constructed from it's string representation and you can
* iterate over the bytes that compose it.
*
* For example:
*
* \code
* // Construct it from a string.
* HWAddress<6> address("00:01:fa:9e:1a:cd");
*
* // Iterate over its bytes.
* for(auto element : address) {
* // element will be each of the bytes(\x00, \x01, \xfa, etc)
* }
* \endcode
*/
template<size_t n, typename Storage = uint8_t>
class HWAddress {
public:
/**
* \brief The type of the elements stored in the hardware address.
*
* This is the same as the template parameter Storage.
*/
typedef Storage storage_type;
/**
* \brief The random access iterator type.
*/
typedef storage_type* iterator;
/**
* \brief Const iterator type.
*/
typedef const storage_type* const_iterator;
/**
* \brief Non-member constant indicating the amount of storage_type
* elements in this address.
*/
static const size_t address_size = n;
/**
* \brief The broadcast address.
*/
static const HWAddress<n, Storage> broadcast;
/**
* \brief Constructor from a const storage_type*.
*
* If no pointer or a null pointer is provided, the address is
* initialized to 00:00:00:00:00:00.
*
* This constructor is very usefull when passing zero initialized
* addresses as arguments to other functions. You can use a
* literal 0, which will be implicitly converted to the empty address.
*
* If a pointer is provided, address_size storage_type elements
* are copied from the pointer, into the internal address representation.
*
* \param ptr The pointer from which to construct this address.
*/
HWAddress(const storage_type* ptr = 0) {
if (ptr) {
std::copy(ptr, ptr + address_size, buffer_);
}
else {
std::fill(begin(), end(), storage_type());
}
}
/**
* \brief Constructs an address from a hex-notation address.
*
* This constructor will parse strings in the form:
*
* "00:01:da:fa:..."
*
* And initialize the internal representation accordingly.
*
* \param address The hex-notation address to be parsed.
*/
HWAddress(const std::string& address) {
convert(address, buffer_);
}
/**
* \brief Overload provided basically for string literals.
*
* This constructor takes a const char array of i elements in
* hex-notation. \sa HWAddress::HWAddress(const std::string& address)
*
* This is mostly used when providing string literals. If this where
* a const char*, then there would be an ambiguity when providing
* a null pointer.
*
* \param address The array of chars containing the hex-notation
* cstring to be parsed.
*/
template<size_t i>
HWAddress(const char (&address)[i]) {
convert(address, buffer_);
}
/**
* \brief Copy construct from a HWAddress of length i.
*
* If i is lower or equal than address_size, then i storage_type
* elements are copied, and the last (n - i) are initialized to
* the default storage_type value(0 most of the times).
*
* If i is larger than address_size, then only the first address_size
* elements are copied.
*
* \param rhs The HWAddress to be constructed from.
*/
template<size_t i>
HWAddress(const HWAddress<i>& rhs) {
// Fill extra bytes
std::fill(
// Copy as most as we can
std::copy(
rhs.begin(),
rhs.begin() + std::min(i, n),
begin()
),
end(),
0
);
}
/**
* \brief Retrieves an iterator pointing to the begining of the
* address.
*
* \return iterator.
*/
iterator begin() {
return buffer_;
}
/**
* \brief Retrieves a const iterator pointing to the begining of
* the address.
*
* \return const_iterator.
*/
const_iterator begin() const {
return buffer_;
}
/**
* \brief Retrieves an iterator pointing one-past-the-end of the
* address.
*
* \return iterator.
*/
iterator end() {
return buffer_ + address_size;
}
/**
* \brief Retrieves a const iterator pointing one-past-the-end of
* the address.
*
* \return const_iterator.
*/
const_iterator end() const {
return buffer_ + address_size;
}
/**
* \brief Compares this HWAddress for equality.
*
* \param rhs The HWAddress to be compared to.
*
* \return bool indicating whether addresses are equal.
*/
bool operator==(const HWAddress& rhs) const {
return std::equal(begin(), end(), rhs.begin());
}
/**
* \brief Compares this HWAddress for in-equality.
*
* \param rhs The HWAddress to be compared to.
*
* \return bool indicating whether addresses are distinct.
*/
bool operator!=(const HWAddress& rhs) const {
return !(*this == rhs);
}
/**
* \brief Compares this HWAddress for less-than inequality.
*
* \param rhs The HWAddress to be compared to.
*
* \return bool indicating whether this address is less-than rhs.
*/
bool operator<(const HWAddress& rhs) const {
return std::lexicographical_compare(begin(), end(), rhs.begin(), rhs.end());
}
/**
* \brief Retrieves the size of this address.
*
* This effectively returns the address_size constant.
*/
const size_t size() const {
return address_size;
}
/**
* \brief Indicates whether this is a broadcast address.
*/
bool is_broadcast() const {
return* this == broadcast;
}
/**
* \brief Indicates whether this is a multicast address.
*/
bool is_multicast() const {
return (*begin() & 0x01);
}
/**
* \brief Indicates whether this is an unicast address.
*/
bool is_unicast() const {
return !is_broadcast() && !is_multicast();
}
/**
* \brief Convert this address to a hex-notation std::string address.
*
* \return std::string containing the hex-notation address.
*/
std::string to_string() const {
std::ostringstream oss;
oss <<* this;
return oss.str();
}
/**
* \brief Retrieves the i-th storage_type in this address.
*
* \param i The element to retrieve.
*/
storage_type operator[](size_t i) const {
return begin()[i];
}
/**
* \brief Writes this HWAddress in hex-notation to a std::ostream.
*
* \param os The stream in which to write the address.
* \param addr The parameter to be written.
* \return std::ostream& pointing to the os parameter.
*/
friend std::ostream& operator<<(std::ostream& os, const HWAddress& addr) {
std::transform(
addr.begin(),
addr.end() - 1,
std::ostream_iterator<std::string>(os, ":"),
&HWAddress::storage_to_string
);
return os << storage_to_string(addr.begin()[HWAddress::address_size - 1]);
}
/**
* \brief Helper function which copies the address into an output
* iterator.
*
* This is the same as:
*
* std::copy(begin(), end(), iter);
*
* But since some PDUs return a HWAddress<> by value, this function
* can be used to avoid temporaries.
*
* \param output The output iterator in which to store this address.
* \return OutputIterator pointing to one-past the last position
* written.
*/
template<typename OutputIterator>
OutputIterator copy(OutputIterator output) const {
for (const_iterator iter = begin(); iter != end(); ++iter) {
*output++ = *iter;
}
return output;
}
private:
template<typename OutputIterator>
static void convert(const std::string& hw_addr, OutputIterator output);
static HWAddress<n> make_broadcast_address() {
// Build a buffer made of n 0xff bytes
uint8_t buffer[n];
for (size_t i = 0; i < n; ++i) {
buffer[i] = 0xff;
}
return HWAddress<n>(buffer);
}
static std::string storage_to_string(storage_type element) {
std::ostringstream oss;
oss << std::hex;
if (element < 0x10) {
oss << '0';
}
oss << (unsigned)element;
return oss.str();
}
storage_type buffer_[n];
};
template<size_t n, typename Storage>
template<typename OutputIterator>
void HWAddress<n, Storage>::convert(const std::string& hw_addr,
OutputIterator output) {
unsigned i(0);
size_t count(0);
storage_type tmp;
while (i < hw_addr.size() && count < n) {
const unsigned end = i+2;
tmp = storage_type();
while (i < end) {
if (hw_addr[i] >= 'a' && hw_addr[i] <= 'f') {
tmp = (tmp << 4) | (hw_addr[i] - 'a' + 10);
}
else if (hw_addr[i] >= 'A' && hw_addr[i] <= 'F') {
tmp = (tmp << 4) | (hw_addr[i] - 'A' + 10);
}
else if (hw_addr[i] >= '0' && hw_addr[i] <= '9') {
tmp = (tmp << 4) | (hw_addr[i] - '0');
}
else if (hw_addr[i] == ':') {
break;
}
else {
throw std::runtime_error("Invalid byte found");
}
i++;
}
*(output++) = tmp;
count++;
if (i < hw_addr.size()) {
if (hw_addr[i] == ':') {
i++;
}
else {
throw std::runtime_error("Invalid separator");
}
}
}
while (count++ < n) {
*(output++) = storage_type();
}
}
template<size_t n, typename Storage>
const HWAddress<n, Storage> HWAddress<n, Storage>::broadcast = make_broadcast_address();
} // namespace Tins
#if TINS_IS_CXX11
namespace std {
// Specialization of std::hash for HWAddress
template<size_t n>
struct hash<Tins::HWAddress<n>> {
size_t operator()(const Tins::HWAddress<n>& addr) const {
return std::hash<std::string>()(addr.to_string());
}
};
} // namespace std
#endif // TINS_IS_CXX11
#endif // TINS_HWADDRESS_H