1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-23 10:45:57 +01:00
Files
libtins/src/radiotap.cpp
Kyle Fazzari a71a3d29ff Fix -Wextra compiler warnings. (#184)
* Fix -Wextra compiler warnings.

Fix #183.

Signed-off-by: Kyle Fazzari <github@status.e4ward.com>

* Comment out unused parameters.

This is done everywhere possible instead of using Internals::unused().
Note that this involved moving some implementations into the
corresponding .cpp file.

Signed-off-by: Kyle Fazzari <github@status.e4ward.com>

* Fix warnings in tests as well.

Signed-off-by: Kyle Fazzari <github@status.e4ward.com>

* Leave IPv4Reassembler alone, it's growing.

Signed-off-by: Kyle Fazzari <github@status.e4ward.com>
2017-01-25 13:26:11 -08:00

580 lines
16 KiB
C++

/*
* Copyright (c) 2016, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "radiotap.h"
#ifdef TINS_HAVE_DOT11
#include <cstring>
#include <stdexcept>
#include "macros.h"
#ifndef _WIN32
#if defined(BSD) || defined(__FreeBSD_kernel__)
#include <net/if_dl.h>
#else
#include <netpacket/packet.h>
#include <sys/socket.h>
#endif
#include <net/ethernet.h>
#endif
#include "dot11/dot11_base.h"
#include "utils.h"
#include "packet_sender.h"
#include "exceptions.h"
#include "memory_helpers.h"
using std::memcpy;
using Tins::Memory::OutputMemoryStream;
namespace Tins {
void check_size(uint32_t total_sz, size_t field_size) {
if (total_sz < field_size) {
throw malformed_packet();
}
}
template<typename T>
void read_field(const uint8_t* &buffer, uint32_t& total_sz, T& field) {
check_size(total_sz, sizeof(field));
memcpy(&field, buffer, sizeof(field));
buffer += sizeof(field);
total_sz -= sizeof(field);
}
RadioTap::RadioTap() : radio_() {
init();
}
RadioTap::RadioTap(const uint8_t* buffer, uint32_t total_sz) {
check_size(total_sz, sizeof(radio_));
const uint8_t* buffer_start = buffer;
memcpy(&radio_, buffer, sizeof(radio_));
uint32_t radiotap_hdr_size = length();
check_size(total_sz, radiotap_hdr_size);
// We start on the first flags field, skipping version, pad and length.
const flags_type* current_flags = (const flags_type*)(buffer + sizeof(uint32_t));
const uint32_t extra_flags_size = find_extra_flag_fields_size(
buffer + sizeof(uint32_t), total_sz);
// Find and skip the extra flag fields.
buffer += extra_flags_size;
radiotap_hdr_size -= extra_flags_size;
// Also skip the header
buffer += sizeof(radio_);
radiotap_hdr_size -= sizeof(radio_);
while (true) {
radio_.flags_32 |= *(const uint32_t*)current_flags;
if (current_flags->tsft) {
align_buffer<8>(buffer_start, buffer, radiotap_hdr_size);
read_field(buffer, radiotap_hdr_size, tsft_);
}
if (current_flags->flags) {
read_field(buffer, radiotap_hdr_size, flags_);
}
if (current_flags->rate) {
read_field(buffer, radiotap_hdr_size, rate_);
}
if (current_flags->channel) {
align_buffer<2>(buffer_start, buffer, radiotap_hdr_size);
read_field(buffer, radiotap_hdr_size, channel_freq_);
read_field(buffer, radiotap_hdr_size, channel_type_);
}
if (current_flags->dbm_signal) {
read_field(buffer, radiotap_hdr_size, dbm_signal_);
}
if (current_flags->dbm_noise) {
read_field(buffer, radiotap_hdr_size, dbm_noise_);
}
if (current_flags->lock_quality) {
read_field(buffer, radiotap_hdr_size, signal_quality_);
}
if (current_flags->antenna) {
read_field(buffer, radiotap_hdr_size, antenna_);
}
if (current_flags->db_signal) {
read_field(buffer, radiotap_hdr_size, db_signal_);
}
if (current_flags->rx_flags) {
align_buffer<2>(buffer_start, buffer, radiotap_hdr_size);
read_field(buffer, radiotap_hdr_size, rx_flags_);
}
if (current_flags->tx_flags) {
align_buffer<2>(buffer_start, buffer, radiotap_hdr_size);
read_field(buffer, radiotap_hdr_size, tx_flags_);
}
if (current_flags->data_retries) {
read_field(buffer, radiotap_hdr_size, data_retries_);
}
if (current_flags->channel_plus) {
align_buffer<4>(buffer_start, buffer, radiotap_hdr_size);
uint32_t dummy;
read_field(buffer, radiotap_hdr_size, dummy);
// nasty Big Endian fix
channel_type_ = Endian::le_to_host<uint16_t>(Endian::host_to_le<uint32_t>(dummy));
read_field(buffer, radiotap_hdr_size, channel_freq_);
read_field(buffer, radiotap_hdr_size, channel_);
read_field(buffer, radiotap_hdr_size, max_power_);
}
if (current_flags->mcs) {
read_field(buffer, radiotap_hdr_size, mcs_.known);
read_field(buffer, radiotap_hdr_size, mcs_.flags);
read_field(buffer, radiotap_hdr_size, mcs_.mcs);
}
// We can do this safely because we checked the size on find_extra_flags...
if (current_flags->ext == 1) {
current_flags++;
}
else {
break;
}
}
total_sz -= length();
buffer += radiotap_hdr_size;
if (radio_.flags.flags && (flags() & FCS) != 0) {
check_size(total_sz, sizeof(uint32_t));
total_sz -= sizeof(uint32_t);
if ((flags() & FAILED_FCS) !=0) {
throw malformed_packet();
}
}
if (total_sz) {
inner_pdu(Dot11::from_bytes(buffer, total_sz));
}
}
void RadioTap::init() {
channel(Utils::channel_to_mhz(1), 0xa0);
flags(FCS);
tsft(0);
dbm_signal(-50);
rx_flags(0);
antenna(0);
}
// This method finds the extra flags field size, taking into account other
// set of flags that may appear if the "ext" bit is on/.
uint32_t RadioTap::find_extra_flag_fields_size(const uint8_t* buffer, uint32_t total_sz) {
const flags_type* ptr = (const flags_type*)buffer;
while (ptr->ext == 1) {
if (total_sz < sizeof(flags_type)) {
throw malformed_packet();
}
++ptr;
}
return static_cast<uint32_t>((const uint8_t*)ptr - buffer);
}
// Setter for RadioTap fields
void RadioTap::version(uint8_t new_version) {
radio_.it_version = new_version;
}
void RadioTap::padding(uint8_t new_padding) {
radio_.it_pad = new_padding;
}
void RadioTap::length(uint16_t new_length) {
radio_.it_len = Endian::host_to_le(new_length);
}
void RadioTap::tsft(uint64_t new_tsft) {
tsft_ = Endian::host_to_le(new_tsft);
radio_.flags.tsft = 1;
}
void RadioTap::flags(FrameFlags new_flags) {
flags_ = (uint8_t)new_flags;
radio_.flags.flags = 1;
}
void RadioTap::rate(uint8_t new_rate) {
rate_ = new_rate;
radio_.flags.rate = 1;
}
void RadioTap::channel(uint16_t new_freq, uint16_t new_type) {
channel_freq_ = Endian::host_to_le(new_freq);
channel_type_ = Endian::host_to_le(new_type);
radio_.flags.channel = 1;
}
void RadioTap::dbm_signal(int8_t new_dbm_signal) {
dbm_signal_ = new_dbm_signal;
radio_.flags.dbm_signal = 1;
}
void RadioTap::dbm_noise(int8_t new_dbm_noise) {
dbm_noise_ = new_dbm_noise;
radio_.flags.dbm_noise = 1;
}
void RadioTap::signal_quality(uint8_t new_signal_quality) {
signal_quality_ = new_signal_quality;
radio_.flags.lock_quality = 1;
}
void RadioTap::data_retries(uint8_t new_data_retries) {
data_retries_ = new_data_retries;
radio_.flags.data_retries = 1;
}
void RadioTap::antenna(uint8_t new_antenna) {
antenna_ = new_antenna;
radio_.flags.antenna = 1;
}
void RadioTap::db_signal(uint8_t new_db_signal) {
db_signal_ = new_db_signal;
radio_.flags.db_signal = 1;
}
void RadioTap::rx_flags(uint16_t new_rx_flag) {
rx_flags_ = Endian::host_to_le(new_rx_flag);
radio_.flags.rx_flags = 1;
}
void RadioTap::tx_flags(uint16_t new_tx_flag) {
tx_flags_ = Endian::host_to_le(new_tx_flag);
radio_.flags.tx_flags = 1;
}
void RadioTap::mcs(const mcs_type& new_mcs) {
mcs_ = new_mcs;
radio_.flags.mcs = 1;
}
uint32_t RadioTap::header_size() const {
uint32_t total_bytes = 0;
if (radio_.flags.tsft) {
total_bytes += sizeof(tsft_);
}
if (radio_.flags.flags) {
total_bytes += sizeof(flags_);
}
if (radio_.flags.rate) {
total_bytes += sizeof(rate_);
}
if (radio_.flags.channel) {
total_bytes += (total_bytes & 1);
total_bytes += sizeof(uint16_t) * 2;
}
if (radio_.flags.dbm_signal) {
total_bytes += sizeof(dbm_signal_);
}
if (radio_.flags.dbm_noise) {
total_bytes += sizeof(dbm_noise_);
}
if (radio_.flags.lock_quality) {
total_bytes += (total_bytes & 1);
total_bytes += sizeof(signal_quality_);
}
if (radio_.flags.antenna) {
total_bytes += sizeof(antenna_);
}
if (radio_.flags.db_signal) {
total_bytes += sizeof(db_signal_);
}
if (radio_.flags.rx_flags) {
total_bytes += (total_bytes & 1);
total_bytes += sizeof(rx_flags_);
}
if (radio_.flags.tx_flags) {
total_bytes += (total_bytes & 1);
total_bytes += sizeof(tx_flags_);
}
if (radio_.flags.data_retries) {
total_bytes += sizeof(data_retries_);
}
if (radio_.flags.channel_plus) {
uint32_t offset = total_bytes % 4;
if (offset) {
total_bytes += 4 - offset;
}
total_bytes += 8;
}
if (radio_.flags.mcs) {
total_bytes += sizeof(mcs_);
}
return sizeof(radio_) + total_bytes;
}
uint32_t RadioTap::trailer_size() const {
// will be sizeof(uint32_t) if the FCS-at-the-end bit is on.
return ((flags_ & 0x10) != 0) ? sizeof(uint32_t) : 0;
}
// Getter for RadioTap fields
uint8_t RadioTap::version() const {
return radio_.it_version;
}
uint8_t RadioTap::padding() const {
return radio_.it_pad;
}
uint16_t RadioTap::length() const {
return Endian::le_to_host(radio_.it_len);
}
uint64_t RadioTap::tsft() const {
if (!radio_.flags.tsft) {
throw field_not_present();
}
return Endian::le_to_host(tsft_);
}
RadioTap::FrameFlags RadioTap::flags() const {
if (!radio_.flags.flags) {
throw field_not_present();
}
return (FrameFlags)flags_;
}
uint8_t RadioTap::rate() const {
if (!radio_.flags.rate) {
throw field_not_present();
}
return rate_;
}
uint16_t RadioTap::channel_freq() const {
if (!radio_.flags.channel) {
throw field_not_present();
}
return Endian::le_to_host(channel_freq_);
}
uint16_t RadioTap::channel_type() const {
if (!radio_.flags.channel) {
throw field_not_present();
}
return Endian::le_to_host(channel_type_);
}
int8_t RadioTap::dbm_signal() const {
if (!radio_.flags.dbm_signal) {
throw field_not_present();
}
return dbm_signal_;
}
int8_t RadioTap::dbm_noise() const {
if (!radio_.flags.dbm_noise) {
throw field_not_present();
}
return dbm_noise_;
}
uint16_t RadioTap::signal_quality() const {
if (!radio_.flags.lock_quality) {
throw field_not_present();
}
return signal_quality_;
}
uint8_t RadioTap::antenna() const {
if (!radio_.flags.antenna) {
throw field_not_present();
}
return antenna_;
}
RadioTap::mcs_type RadioTap::mcs() const {
if (!radio_.flags.mcs) {
throw field_not_present();
}
return mcs_;
}
uint8_t RadioTap::db_signal() const {
if (!radio_.flags.db_signal) {
throw field_not_present();
}
return db_signal_;
}
uint32_t RadioTap::channel_plus() const {
if (!radio_.flags.channel_plus) {
throw field_not_present();
}
return Endian::le_to_host<uint32_t>(channel_type_);
}
uint16_t RadioTap::rx_flags() const {
if (!radio_.flags.rx_flags) {
throw field_not_present();
}
return Endian::le_to_host(rx_flags_);
}
uint16_t RadioTap::tx_flags() const {
if (!radio_.flags.tx_flags) {
throw field_not_present();
}
return Endian::le_to_host(tx_flags_);
}
uint8_t RadioTap::data_retries() const {
if (!radio_.flags.data_retries) {
throw field_not_present();
}
return data_retries_;
}
#ifndef _WIN32
void RadioTap::send(PacketSender& sender, const NetworkInterface& iface) {
if (!iface) {
throw invalid_interface();
}
#if !defined(BSD) && !defined(__FreeBSD_kernel__)
struct sockaddr_ll addr;
memset(&addr, 0, sizeof(struct sockaddr_ll));
addr.sll_family = Endian::host_to_be<uint16_t>(PF_PACKET);
addr.sll_protocol = Endian::host_to_be<uint16_t>(ETH_P_ALL);
addr.sll_halen = 6;
addr.sll_ifindex = iface.id();
const Tins::Dot11* wlan = tins_cast<Tins::Dot11*>(inner_pdu());
if (wlan) {
Tins::Dot11::address_type dot11_addr(wlan->addr1());
std::copy(dot11_addr.begin(), dot11_addr.end(), addr.sll_addr);
}
sender.send_l2(*this, (struct sockaddr*)&addr, (uint32_t)sizeof(addr), iface);
#else
sender.send_l2(*this, 0, 0, iface);
#endif
}
#endif
bool RadioTap::matches_response(const uint8_t* ptr, uint32_t total_sz) const {
if (sizeof(radio_) < total_sz) {
return false;
}
const radiotap_hdr* radio_ptr = (const radiotap_hdr*)ptr;
if (radio_ptr->it_len <= total_sz) {
ptr += radio_ptr->it_len;
total_sz -= radio_ptr->it_len;
return inner_pdu() ? inner_pdu()->matches_response(ptr, total_sz) : true;
}
return false;
}
void RadioTap::write_serialization(uint8_t* buffer, uint32_t total_sz, const PDU* /*parent*/) {
OutputMemoryStream stream(buffer, total_sz);
uint8_t* buffer_start = buffer;
radio_.it_len = Endian::host_to_le<uint16_t>(header_size());
stream.write(radio_);
if (radio_.flags.tsft) {
stream.write(tsft_);
}
if (radio_.flags.flags) {
stream.write(flags_);
}
if (radio_.flags.rate) {
stream.write(rate_);
}
if (radio_.flags.channel) {
if (((stream.pointer() - buffer_start) & 1) == 1) {
stream.write<uint8_t>(0);
}
stream.write(channel_freq_);
stream.write(channel_type_);
}
if (radio_.flags.dbm_signal) {
stream.write(dbm_signal_);
}
if (radio_.flags.dbm_noise) {
stream.write(dbm_noise_);
}
if (radio_.flags.lock_quality) {
if (((stream.pointer() - buffer_start) & 1) == 1) {
stream.write<uint8_t>(0);
}
stream.write(signal_quality_);
}
if (radio_.flags.antenna) {
stream.write(antenna_);
}
if (radio_.flags.db_signal) {
stream.write(db_signal_);
}
if (radio_.flags.rx_flags) {
if (((stream.pointer() - buffer_start) & 1) == 1) {
stream.write<uint8_t>(0);
}
stream.write(rx_flags_);
}
if (radio_.flags.channel_plus) {
const uint32_t padding = ((stream.pointer() - buffer_start) % 4);
if (padding != 0) {
stream.fill(4 - padding, 0);
}
uint32_t dummy = channel_type_;
// nasty Big Endian fix
dummy = Endian::le_to_host<uint32_t>(Endian::host_to_le<uint16_t>(dummy));
stream.write(dummy);
stream.write(channel_freq_);
stream.write(channel_);
stream.write(max_power_);
}
if ((flags_ & 0x10) != 0 && inner_pdu()) {
uint32_t crc32 = Endian::host_to_le(
Utils::crc32(stream.pointer(), inner_pdu()->size())
);
stream.skip(inner_pdu()->size());
stream.write(crc32);
}
}
} // Tins
#endif // TINS_HAVE_DOT11