1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-23 02:35:57 +01:00
Files
libtins/include/tins/pdu_option.h
2014-10-17 12:14:00 -03:00

522 lines
16 KiB
C++

/*
* Copyright (c) 2014, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef TINS_PDU_OPTION_H
#define TINS_PDU_OPTION_H
#include <vector>
#include <iterator>
#include <cstring>
#include <algorithm>
#include <string>
#include <stdint.h>
#include "exceptions.h"
#include "endianness.h"
#include "internals.h"
#include "ip_address.h"
#include "ipv6_address.h"
#include "hw_address.h"
namespace Tins {
/**
* \cond
*/
template<typename OptionType, class PDUType>
class PDUOption;
namespace Internals {
template<typename T, typename X, typename PDUType>
T convert_to_integral(const PDUOption<X, PDUType> & opt) {
if(opt.data_size() != sizeof(T))
throw malformed_option();
T data = *(T*)opt.data_ptr();
if(PDUType::endianness == PDUType::BE)
data = Endian::be_to_host(data);
else
data = Endian::le_to_host(data);
return data;
}
template<typename T, typename = void>
struct converter {
template<typename X, typename PDUType>
static T convert(const PDUOption<X, PDUType>& opt) {
return T::from_option(opt);
}
};
template<>
struct converter<uint8_t> {
template<typename X, typename PDUType>
static uint8_t convert(const PDUOption<X, PDUType>& opt) {
if(opt.data_size() != 1)
throw malformed_option();
return *opt.data_ptr();
}
};
template<>
struct converter<uint16_t> {
template<typename X, typename PDUType>
static uint16_t convert(const PDUOption<X, PDUType>& opt) {
return convert_to_integral<uint16_t>(opt);
}
};
template<>
struct converter<uint32_t> {
template<typename X, typename PDUType>
static uint32_t convert(const PDUOption<X, PDUType>& opt) {
return convert_to_integral<uint32_t>(opt);
}
};
template<>
struct converter<uint64_t> {
template<typename X, typename PDUType>
static uint64_t convert(const PDUOption<X, PDUType>& opt) {
return convert_to_integral<uint64_t>(opt);
}
};
template<size_t n>
struct converter<HWAddress<n> > {
template<typename X, typename PDUType>
static HWAddress<n> convert(const PDUOption<X, PDUType>& opt) {
if(opt.data_size() != n)
throw malformed_option();
return HWAddress<n>(opt.data_ptr());
}
};
template<>
struct converter<IPv4Address> {
template<typename X, typename PDUType>
static IPv4Address convert(const PDUOption<X, PDUType>& opt) {
if(opt.data_size() != sizeof(uint32_t))
throw malformed_option();
const uint32_t *ptr = (const uint32_t*)opt.data_ptr();
if(PDUType::endianness == PDUType::BE)
return IPv4Address(*ptr);
else
return IPv4Address(Endian::change_endian(*ptr));
}
};
template<>
struct converter<IPv6Address> {
template<typename X, typename PDUType>
static IPv6Address convert(const PDUOption<X, PDUType>& opt) {
if(opt.data_size() != IPv6Address::address_size)
throw malformed_option();
return IPv6Address(opt.data_ptr());
}
};
template<>
struct converter<std::string> {
template<typename X, typename PDUType>
static std::string convert(const PDUOption<X, PDUType>& opt) {
return std::string(
opt.data_ptr(),
opt.data_ptr() + opt.data_size()
);
}
};
template<>
struct converter<std::vector<float> > {
template<typename X, typename PDUType>
static std::vector<float> convert(const PDUOption<X, PDUType>& opt) {
std::vector<float> output;
const uint8_t *ptr = opt.data_ptr(), *end = ptr + opt.data_size();
while(ptr != end) {
output.push_back(float(*(ptr++) & 0x7f) / 2);
}
return output;
}
};
template<typename T>
struct converter<std::vector<T>, typename enable_if<is_unsigned_integral<T>::value>::type> {
template<typename X, typename PDUType>
static std::vector<T> convert(const PDUOption<X, PDUType>& opt) {
if(opt.data_size() % sizeof(T) != 0)
throw malformed_option();
const T *ptr = (const T*)opt.data_ptr();
const T *end = (const T*)(opt.data_ptr() + opt.data_size());
std::vector<T> output(std::distance(ptr, end));
typename std::vector<T>::iterator it = output.begin();
while(ptr < end) {
if(PDUType::endianness == PDUType::BE)
*it++ = Endian::be_to_host(*ptr++);
else
*it++ = Endian::le_to_host(*ptr++);
}
return output;
}
};
template<typename T, typename U>
struct converter<
std::vector<std::pair<T, U> >,
typename enable_if<
is_unsigned_integral<T>::value && is_unsigned_integral<U>::value
>::type
> {
template<typename X, typename PDUType>
static std::vector<std::pair<T, U> > convert(const PDUOption<X, PDUType>& opt) {
if(opt.data_size() % (sizeof(T) + sizeof(U)) != 0)
throw malformed_option();
const uint8_t *ptr = opt.data_ptr(), *end = ptr + opt.data_size();
std::vector<std::pair<T, U> > output;
while(ptr < end) {
std::pair<T, U> data;
data.first = *(const T*)ptr;
ptr += sizeof(T);
data.second = *(const U*)ptr;
ptr += sizeof(U);
if(PDUType::endianness == PDUType::BE) {
data.first = Endian::be_to_host(data.first);
data.second = Endian::be_to_host(data.second);
}
else {
data.first = Endian::le_to_host(data.first);
data.second = Endian::le_to_host(data.second);
}
output.push_back(data);
}
return output;
}
};
template<>
struct converter<std::vector<IPv4Address> > {
template<typename X, typename PDUType>
static std::vector<IPv4Address> convert(const PDUOption<X, PDUType>& opt) {
if(opt.data_size() % 4 != 0)
throw malformed_option();
const uint32_t *ptr = (const uint32_t*)opt.data_ptr();
const uint32_t *end = (const uint32_t*)(opt.data_ptr() + opt.data_size());
std::vector<IPv4Address> output(std::distance(ptr, end));
std::vector<IPv4Address>::iterator it = output.begin();
while(ptr < end) {
if(PDUType::endianness == PDUType::BE)
*it++ = IPv4Address(*ptr++);
else
*it++ = IPv4Address(Endian::change_endian(*ptr++));
}
return output;
}
};
template<>
struct converter<std::vector<IPv6Address> > {
template<typename X, typename PDUType>
static std::vector<IPv6Address> convert(const PDUOption<X, PDUType>& opt) {
if(opt.data_size() % IPv6Address::address_size != 0)
throw malformed_option();
const uint8_t *ptr = opt.data_ptr(), *end = opt.data_ptr() + opt.data_size();
std::vector<IPv6Address> output;
while(ptr < end) {
output.push_back(IPv6Address(ptr));
ptr += IPv6Address::address_size;
}
return output;
}
};
template<typename T, typename U>
struct converter<
std::pair<T, U>,
typename enable_if<
is_unsigned_integral<T>::value && is_unsigned_integral<U>::value
>::type
> {
template<typename X, typename PDUType>
static std::pair<T, U> convert(const PDUOption<X, PDUType>& opt) {
if(opt.data_size() != sizeof(T) + sizeof(U))
throw malformed_option();
std::pair<T, U> output;
std::memcpy(&output.first, opt.data_ptr(), sizeof(T));
std::memcpy(&output.second, opt.data_ptr() + sizeof(T), sizeof(U));
if(PDUType::endianness == PDUType::BE) {
output.first = Endian::be_to_host(output.first);
output.second = Endian::be_to_host(output.second);
}
else {
output.first = Endian::le_to_host(output.first);
output.second = Endian::le_to_host(output.second);
}
return output;
}
};
}
/**
* \endcond
*/
/**
* \class PDUOption
* \brief Represents a PDU option field.
*
* Several PDUs, such as TCP, IP, Dot11 or DHCP contain options. All
* of them behave exactly the same way. This class represents those
* options.
*
* The OptionType template parameter indicates the type that will be
* used to store this option's identifier.
*/
template<typename OptionType, class PDUType>
class PDUOption {
private:
static const int small_buffer_size = 8;
public:
typedef uint8_t data_type;
typedef OptionType option_type;
/**
* \brief Constructs a PDUOption.
* \param opt The option type.
* \param length The option's data length.
* \param data The option's data(if any).
*/
PDUOption(option_type opt = option_type(), size_t length = 0, const data_type *data = 0)
: option_(opt), size_(length) {
set_payload_contents(data, data + (data ? length : 0));
}
/**
* \brief Copy constructor.
* \param rhs The PDUOption to be copied.
*/
PDUOption(const PDUOption& rhs) {
real_size_ = 0;
*this = rhs;
}
#if TINS_IS_CXX11
/**
* \brief Move constructor.
* \param rhs The PDUOption to be moved.
*/
PDUOption(PDUOption&& rhs) {
real_size_ = 0;
*this = std::move(rhs);
}
/**
* \brief Move assignment operator.
* \param rhs The PDUOption to be moved.
*/
PDUOption& operator=(PDUOption&& rhs) {
option_ = rhs.option_;
size_ = rhs.size_;
if(real_size_ > small_buffer_size) {
delete[] payload_.big_buffer_ptr;
}
real_size_ = rhs.real_size_;
if(real_size_ > small_buffer_size) {
payload_.big_buffer_ptr = nullptr;
std::swap(payload_.big_buffer_ptr, rhs.payload_.big_buffer_ptr);
rhs.real_size_ = 0;
}
else {
std::copy(
rhs.data_ptr(),
rhs.data_ptr() + rhs.data_size(),
payload_.small_buffer
);
}
return *this;
}
#endif // TINS_IS_CXX11
/**
* \brief Copy assignment operator.
* \param rhs The PDUOption to be copied.
*/
PDUOption& operator=(const PDUOption& rhs) {
option_ = rhs.option_;
size_ = rhs.size_;
if(real_size_ > small_buffer_size) {
delete[] payload_.big_buffer_ptr;
}
real_size_ = rhs.real_size_;
set_payload_contents(rhs.data_ptr(), rhs.data_ptr() + rhs.data_size());
return *this;
}
/**
* \brief Destructor.
*/
~PDUOption() {
if(real_size_ > small_buffer_size) {
delete[] payload_.big_buffer_ptr;
}
}
/**
* \brief Constructs a PDUOption from iterators, which
* indicate the data to be stored in it.
*
* \param opt The option type.
* \param start The beginning of the option data.
* \param end The end of the option data.
*/
template<typename ForwardIterator>
PDUOption(option_type opt, ForwardIterator start, ForwardIterator end)
: option_(opt), size_(std::distance(start, end)) {
set_payload_contents(start, end);
}
/**
* \brief Constructs a PDUOption from iterators, which
* indicate the data to be stored in it.
*
* The length parameter indicates the contents of the length field
* when this option is serialized. Note that this can be different
* to std::distance(start, end).
*
* \sa length_field
*
* \param opt The option type.
* \param length The length of this option.
* \param start The beginning of the option data.
* \param end The end of the option data.
*/
template<typename ForwardIterator>
PDUOption(option_type opt, size_t length, ForwardIterator start, ForwardIterator end)
: option_(opt), size_(length) {
set_payload_contents(start, end);
}
/**
* Retrieves this option's type.
* \return uint8_t containing this option's size.
*/
option_type option() const {
return option_;
}
/**
* Sets this option's type
* \param opt The option type to be set.
*/
void option(option_type opt) {
option_ = opt;
}
/**
* Retrieves this option's data.
*
* If this method is called when data_size() == 0,
* dereferencing the returned pointer will result in undefined
* behaviour.
*
* \return const data_type& containing this option's value.
*/
const data_type *data_ptr() const {
return real_size_ <= small_buffer_size ?
payload_.small_buffer :
payload_.big_buffer_ptr;
}
/**
* \brief Retrieves the length of this option's data.
*
* This is the actual size of the data.
*/
size_t data_size() const {
return real_size_;
}
/**
* \brief Retrieves the data length field.
*
* This is what the size field will contain when this option is
* serialized. It can differ from the actual data size.
*
* This will be equal to data_size unless the constructor that takes
* both a data length and two iterators is used.
*
* \sa data_size.
*/
size_t length_field() const {
return size_;
}
/**
* \brief Constructs a T from this PDUOption.
*
* Use this method to convert a PDUOption to the specific type that
* represents it. For example, if you know an option is of type
* PDU::SACK, you could use option.to<TCP::sack_type>().
*/
template<typename T>
T to() const {
return Internals::converter<T>::convert(*this);
}
private:
template<typename ForwardIterator>
void set_payload_contents(ForwardIterator start, ForwardIterator end) {
real_size_ = std::distance(start, end);
if(real_size_ <= small_buffer_size) {
std::copy(
start,
end,
payload_.small_buffer
);
}
else {
payload_.big_buffer_ptr = new data_type[real_size_];
std::copy(
start,
end,
payload_.big_buffer_ptr
);
}
}
option_type option_;
uint16_t size_, real_size_;
union {
data_type small_buffer[small_buffer_size];
data_type* big_buffer_ptr;
} payload_;
};
} // namespace Tins
#endif // TINS_PDU_OPTION_H