1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-23 10:45:57 +01:00
Files
libtins/src/ipv6.cpp
2013-04-21 18:50:08 -03:00

273 lines
9.1 KiB
C++

/*
* Copyright (c) 2012, Nasel
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <cstring>
#include <cassert>
#ifndef WIN32
#include <netinet/in.h>
#include <sys/socket.h>
#else
#include <ws2tcpip.h>
#endif
#include <algorithm>
#include "ipv6.h"
#include "constants.h"
#include "packet_sender.h"
#include "ip.h"
#include "tcp.h"
#include "udp.h"
#include "icmp.h"
#include "icmpv6.h"
#include "rawpdu.h"
#include "exceptions.h"
namespace Tins {
IPv6::IPv6(address_type ip_dst, address_type ip_src, PDU *child)
: headers_size(0)
{
std::memset(&_header, 0, sizeof(_header));
version(6);
dst_addr(ip_dst);
src_addr(ip_src);
}
IPv6::IPv6(const uint8_t *buffer, uint32_t total_sz)
: headers_size(0) {
if(total_sz < sizeof(_header))
throw malformed_packet();
std::memcpy(&_header, buffer, sizeof(_header));
buffer += sizeof(_header);
total_sz -= sizeof(_header);
uint8_t current_header = _header.next_header;
while(total_sz) {
if(is_extension_header(current_header)) {
if(total_sz < 8)
throw malformed_packet();
// every ext header is at least 8 bytes long
// minus one, from the next_header field.
uint32_t size = static_cast<uint32_t>(buffer[1]) + 8;
// -1 -> next header identifier
if(total_sz < size)
throw malformed_packet();
// minus one, from the size field
add_ext_header(
ext_header(buffer[0], size - sizeof(uint8_t)*2, buffer + 2)
);
current_header = buffer[0];
buffer += size;
total_sz -= size;
}
else {
switch(current_header) {
case Constants::IP::PROTO_TCP:
inner_pdu(new Tins::TCP(buffer, total_sz));
break;
case Constants::IP::PROTO_UDP:
inner_pdu(new Tins::UDP(buffer, total_sz));
break;
case Constants::IP::PROTO_ICMP:
inner_pdu(new Tins::ICMP(buffer, total_sz));
break;
case Constants::IP::PROTO_ICMPV6:
inner_pdu(new Tins::ICMPv6(buffer, total_sz));
break;
default:
inner_pdu(new Tins::RawPDU(buffer, total_sz));
break;
}
total_sz = 0;
}
}
}
bool IPv6::is_extension_header(uint8_t header_id) {
return header_id == HOP_BY_HOP || header_id == DESTINATION_ROUTING_OPTIONS
|| header_id == ROUTING || header_id == FRAGMENT || header_id == AUTHENTICATION
|| header_id == SECURITY_ENCAPSULATION || header_id == DESTINATION_OPTIONS
|| header_id == MOBILITY || header_id == NO_NEXT_HEADER;
}
void IPv6::version(small_uint<4> new_version) {
_header.version = new_version;
}
void IPv6::traffic_class(uint8_t new_traffic_class) {
#if TINS_IS_LITTLE_ENDIAN
_header.traffic_class = (new_traffic_class >> 4) & 0xf;
_header.flow_label[0] = (_header.flow_label[0] & 0x0f) | ((new_traffic_class << 4) & 0xf0);
#else
_header.traffic_class = new_traffic_class;
#endif
}
void IPv6::flow_label(small_uint<20> new_flow_label) {
#if TINS_IS_LITTLE_ENDIAN
uint32_t value = Endian::host_to_be<uint32_t>(new_flow_label);
_header.flow_label[2] = (value >> 24) & 0xff;
_header.flow_label[1] = (value >> 16) & 0xff;
_header.flow_label[0] = ((value >> 8) & 0x0f) | (_header.flow_label[0] & 0xf0);
#else
_header.flow_label = new_flow_label;
#endif
}
void IPv6::payload_length(uint16_t new_payload_length) {
_header.payload_length = Endian::host_to_be(new_payload_length);
}
void IPv6::next_header(uint8_t new_next_header) {
_header.next_header = new_next_header;
}
void IPv6::hop_limit(uint8_t new_hop_limit) {
_header.hop_limit = new_hop_limit;
}
void IPv6::src_addr(const address_type &new_src_addr) {
new_src_addr.copy(_header.src_addr);
}
void IPv6::dst_addr(const address_type &new_dst_addr) {
new_dst_addr.copy(_header.dst_addr);
}
uint32_t IPv6::header_size() const {
return sizeof(_header) + headers_size;
}
bool IPv6::matches_response(uint8_t *ptr, uint32_t total_sz) {
if(total_sz < sizeof(ipv6_header))
return false;
const ipv6_header *hdr_ptr = (const ipv6_header*)ptr;
// checks for ff02 multicast
if(src_addr() == hdr_ptr->dst_addr &&
(dst_addr() == hdr_ptr->src_addr || (_header.dst_addr[0] == 0xff && _header.dst_addr[1] == 0x02))) {
// is this OK? there's no inner pdu, simple dst/src addr match should suffice
if(!inner_pdu())
return true;
ptr += sizeof(ipv6_header);
total_sz -= sizeof(ipv6_header);
uint8_t current = hdr_ptr->next_header;
// 8 == minimum header size
while(total_sz > 8 && is_extension_header(current)) {
if(static_cast<uint32_t>(ptr[1] + 1) * 8 > total_sz)
return false;
current = ptr[0];
total_sz -= (ptr[1] + 1) * 8;
ptr += (ptr[1] + 1) * 8;
}
if(!is_extension_header(current))
return inner_pdu()->matches_response(ptr, total_sz);
}
return false;
}
void IPv6::write_serialization(uint8_t *buffer, uint32_t total_sz, const PDU *parent) {
#ifdef DEBUG
assert(total_sz >= header_size());
#endif
if(inner_pdu()) {
uint8_t new_flag = 0xff;
switch(inner_pdu()->pdu_type()) {
case PDU::IP:
new_flag = Constants::IP::PROTO_IPIP;
break;
case PDU::TCP:
new_flag = Constants::IP::PROTO_TCP;
break;
case PDU::UDP:
new_flag = Constants::IP::PROTO_UDP;
break;
case PDU::ICMP:
new_flag = Constants::IP::PROTO_ICMP;
break;
case PDU::ICMPv6:
new_flag = Constants::IP::PROTO_ICMPV6;
break;
default:
break;
};
if(new_flag != 0xff)
set_last_next_header(new_flag);
}
payload_length(total_sz - sizeof(_header));
std::memcpy(buffer, &_header, sizeof(_header));
buffer += sizeof(_header);
for(headers_type::const_iterator it = ext_headers.begin(); it != ext_headers.end(); ++it) {
buffer = write_header(*it, buffer);
}
}
#ifndef BSD
void IPv6::send(PacketSender &sender, const NetworkInterface &) {
struct sockaddr_in6 link_addr;
PacketSender::SocketType type = PacketSender::IPV6_SOCKET;
link_addr.sin6_family = AF_INET6;
link_addr.sin6_port = 0;
std::copy(_header.dst_addr, _header.dst_addr + address_type::address_size, (uint8_t*)&link_addr.sin6_addr);
if(inner_pdu() && inner_pdu()->pdu_type() == PDU::ICMP)
type = PacketSender::ICMP_SOCKET;
sender.send_l3(*this, (struct sockaddr*)&link_addr, sizeof(link_addr), type);
}
#endif
void IPv6::add_ext_header(const ext_header &header) {
ext_headers.push_back(header);
headers_size += header.data_size() + sizeof(uint8_t) * 2;
}
const IPv6::ext_header *IPv6::search_header(ExtensionHeader id) const {
uint8_t current_header = _header.next_header;
headers_type::const_iterator it = ext_headers.begin();
while(it != ext_headers.end() && current_header != id) {
current_header = it->option();
++it;
}
if(it == ext_headers.end())
return 0;
return &*it;
}
void IPv6::set_last_next_header(uint8_t value) {
if(ext_headers.empty())
_header.next_header = value;
else
ext_headers.back().option(value);
}
uint8_t *IPv6::write_header(const ext_header &header, uint8_t *buffer) {
*buffer++ = header.option();
*buffer++ = (header.length_field() > 8) ? (header.length_field() - 8) : 0;
return std::copy(header.data_ptr(), header.data_ptr() + header.data_size(), buffer);
}
}