1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-23 10:45:57 +01:00
Files
libtins/src/internals.cpp
2017-03-21 19:04:33 -07:00

452 lines
15 KiB
C++

/*
* Copyright (c) 2016, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "internals.h"
#ifdef TINS_HAVE_PCAP
#include <pcap.h>
#endif // TINS_HAVE_PCAP
#include "ip.h"
#include "ethernetII.h"
#include "ieee802_3.h"
#include "radiotap.h"
#include "dot11/dot11_base.h"
#include "ipv6.h"
#include "tcp.h"
#include "udp.h"
#include "ipsec.h"
#include "icmp.h"
#include "loopback.h"
#include "sll.h"
#include "ppi.h"
#include "icmpv6.h"
#include "mpls.h"
#include "arp.h"
#include "eapol.h"
#include "rawpdu.h"
#include "dot1q.h"
#include "pppoe.h"
#include "exceptions.h"
#include "ip_address.h"
#include "ipv6_address.h"
#include "pdu_allocator.h"
#include "memory_helpers.h"
using std::string;
using Tins::Memory::InputMemoryStream;
namespace Tins {
namespace Internals {
bool from_hex(const string& str, uint32_t& result) {
size_t i = 0;
result = 0;
while (i < str.size()) {
uint8_t tmp;
if (str[i] >= 'A' && str[i] <= 'F') {
tmp = (str[i] - 'A' + 10);
}
else if (str[i] >= '0' && str[i] <= '9') {
tmp = (str[i] - '0');
}
else {
return false;
}
result = (result << 4) | tmp;
i++;
}
return true;
}
bool from_hex(const string& str, string& result) {
result = "";
for (size_t i = 0; i < str.size(); i+= 2) {
uint8_t value = 0;
for (size_t j = i; j < i + 2 && j < str.size(); ++j) {
if (str[j] >= 'A' && str[j] <= 'F') {
value = (value << 4) | (str[j] - 'A' + 10);
}
else if (str[j] >= 'a' && str[j] <= 'f') {
value = (value << 4) | (str[j] - 'a' + 10);
}
else if (str[j] >= '0' && str[j] <= '9') {
value = (value << 4) | (str[j] - '0');
}
else {
return false;
}
}
result.push_back(value);
}
return true;
}
void skip_line(std::istream& input) {
int c = 0;
while (c != '\n' && input) {
c = input.get();
}
}
Tins::PDU* pdu_from_flag(Constants::Ethernet::e flag,
const uint8_t* buffer,
uint32_t size,
bool rawpdu_on_no_match) {
switch (flag) {
case Tins::Constants::Ethernet::IP:
return new IP(buffer, size);
case Constants::Ethernet::IPV6:
return new IPv6(buffer, size);
case Tins::Constants::Ethernet::ARP:
return new ARP(buffer, size);
case Tins::Constants::Ethernet::PPPOED:
case Tins::Constants::Ethernet::PPPOES:
return new PPPoE(buffer, size);
case Tins::Constants::Ethernet::EAPOL:
return EAPOL::from_bytes(buffer, size);
case Tins::Constants::Ethernet::VLAN:
case Tins::Constants::Ethernet::QINQ:
case Tins::Constants::Ethernet::OLD_QINQ:
return new Dot1Q(buffer, size);
case Tins::Constants::Ethernet::MPLS:
return new MPLS(buffer, size);
default:
{
PDU* pdu = Internals::allocate<EthernetII>(
static_cast<uint16_t>(flag),
buffer,
size
);
if (pdu) {
return pdu;
}
}
return rawpdu_on_no_match ? new RawPDU(buffer, size) : 0;
};
}
Tins::PDU* pdu_from_flag(Constants::IP::e flag,
const uint8_t* buffer,
uint32_t size,
bool rawpdu_on_no_match) {
switch (flag) {
case Constants::IP::PROTO_IPIP:
return new Tins::IP(buffer, size);
case Constants::IP::PROTO_TCP:
return new Tins::TCP(buffer, size);
case Constants::IP::PROTO_UDP:
return new Tins::UDP(buffer, size);
case Constants::IP::PROTO_ICMP:
return new Tins::ICMP(buffer, size);
case Constants::IP::PROTO_ICMPV6:
return new Tins::ICMPv6(buffer, size);
case Constants::IP::PROTO_IPV6:
return new Tins::IPv6(buffer, size);
case Constants::IP::PROTO_AH:
return new Tins::IPSecAH(buffer, size);
case Constants::IP::PROTO_ESP:
return new Tins::IPSecESP(buffer, size);
default:
break;
}
if (rawpdu_on_no_match) {
return new Tins::RawPDU(buffer, size);
}
return 0;
}
#ifdef TINS_HAVE_PCAP
PDU* pdu_from_dlt_flag(int flag,
const uint8_t* buffer,
uint32_t size,
bool rawpdu_on_no_match) {
switch (flag) {
case DLT_EN10MB:
return new EthernetII(buffer, size);
#ifdef TINS_HAVE_DOT11
case DLT_IEEE802_11_RADIO:
return new RadioTap(buffer, size);
case DLT_IEEE802_11:
return Dot11::from_bytes(buffer, size);
#else // TINS_HAVE_DOT11
case DLT_IEEE802_11_RADIO:
case DLT_IEEE802_11:
throw protocol_disabled();
#endif // TINS_HAVE_DOT11
case DLT_NULL:
return new Loopback(buffer, size);
case DLT_LINUX_SLL:
return new SLL(buffer, size);
case DLT_PPI:
return new PPI(buffer, size);
default:
return rawpdu_on_no_match ? new RawPDU(buffer, size) : 0;
};
}
#endif // TINS_HAVE_PCAP
Tins::PDU* pdu_from_flag(PDU::PDUType type, const uint8_t* buffer, uint32_t size) {
switch(type) {
case Tins::PDU::ETHERNET_II:
return new Tins::EthernetII(buffer, size);
case Tins::PDU::IP:
return new Tins::IP(buffer, size);
case Tins::PDU::IPv6:
return new Tins::IPv6(buffer, size);
case Tins::PDU::ARP:
return new Tins::ARP(buffer, size);
case Tins::PDU::IEEE802_3:
return new Tins::IEEE802_3(buffer, size);
case Tins::PDU::PPPOE:
return new Tins::PPPoE(buffer, size);
#ifdef TINS_HAVE_DOT11
case Tins::PDU::RADIOTAP:
return new Tins::RadioTap(buffer, size);
case Tins::PDU::DOT11:
case Tins::PDU::DOT11_ACK:
case Tins::PDU::DOT11_ASSOC_REQ:
case Tins::PDU::DOT11_ASSOC_RESP:
case Tins::PDU::DOT11_AUTH:
case Tins::PDU::DOT11_BEACON:
case Tins::PDU::DOT11_BLOCK_ACK:
case Tins::PDU::DOT11_BLOCK_ACK_REQ:
case Tins::PDU::DOT11_CF_END:
case Tins::PDU::DOT11_DATA:
case Tins::PDU::DOT11_CONTROL:
case Tins::PDU::DOT11_DEAUTH:
case Tins::PDU::DOT11_DIASSOC:
case Tins::PDU::DOT11_END_CF_ACK:
case Tins::PDU::DOT11_MANAGEMENT:
case Tins::PDU::DOT11_PROBE_REQ:
case Tins::PDU::DOT11_PROBE_RESP:
case Tins::PDU::DOT11_PS_POLL:
case Tins::PDU::DOT11_REASSOC_REQ:
case Tins::PDU::DOT11_REASSOC_RESP:
case Tins::PDU::DOT11_RTS:
case Tins::PDU::DOT11_QOS_DATA:
return Tins::Dot11::from_bytes(buffer, size);
#endif // TINS_HAVE_DOT11
default:
return 0;
};
}
Constants::Ethernet::e pdu_flag_to_ether_type(PDU::PDUType flag) {
switch (flag) {
case PDU::IP:
return Constants::Ethernet::IP;
case PDU::IPv6:
return Constants::Ethernet::IPV6;
case PDU::ARP:
return Constants::Ethernet::ARP;
case PDU::DOT1Q:
return Constants::Ethernet::VLAN;
case PDU::PPPOE:
return Constants::Ethernet::PPPOED;
case PDU::MPLS:
return Constants::Ethernet::MPLS;
case PDU::RSNEAPOL:
case PDU::RC4EAPOL:
return Constants::Ethernet::EAPOL;
default:
if (Internals::pdu_type_registered<EthernetII>(flag)) {
return static_cast<Constants::Ethernet::e>(
Internals::pdu_type_to_id<EthernetII>(flag)
);
}
return Constants::Ethernet::UNKNOWN;
}
}
PDU::PDUType ether_type_to_pdu_flag(Constants::Ethernet::e flag) {
switch (flag) {
case Constants::Ethernet::IP:
return PDU::IP;
case Constants::Ethernet::IPV6:
return PDU::IPv6;
case Constants::Ethernet::ARP:
return PDU::ARP;
case Constants::Ethernet::VLAN:
return PDU::DOT1Q;
case Constants::Ethernet::PPPOED:
return PDU::PPPOE;
//case PDU::RSNEAPOL
//case PDU::RC4EAPOL:
// return Constants::Ethernet::EAPOL;
default:
return PDU::UNKNOWN;
}
}
Constants::IP::e pdu_flag_to_ip_type(PDU::PDUType flag) {
switch(flag) {
case PDU::IP:
return Constants::IP::PROTO_IPIP;
case PDU::IPv6:
return Constants::IP::PROTO_IPV6;
case PDU::TCP:
return Constants::IP::PROTO_TCP;
case PDU::UDP:
return Constants::IP::PROTO_UDP;
case PDU::ICMP:
return Constants::IP::PROTO_ICMP;
case PDU::ICMPv6:
return Constants::IP::PROTO_ICMPV6;
case PDU::IPSEC_AH:
return Constants::IP::PROTO_AH;
case PDU::IPSEC_ESP:
return Constants::IP::PROTO_ESP;
default:
return static_cast<Constants::IP::e>(0xff);
};
}
uint32_t get_padded_icmp_inner_pdu_size(const PDU* inner_pdu, uint32_t pad_alignment) {
// This gets the size of the next pdu, padded to the next 32 bit word boundary
if (inner_pdu) {
uint32_t inner_pdu_size = inner_pdu->size();
uint32_t padding = inner_pdu_size % pad_alignment;
inner_pdu_size = padding ? (inner_pdu_size - padding + pad_alignment) : inner_pdu_size;
return inner_pdu_size;
}
else {
return 0;
}
}
void try_parse_icmp_extensions(InputMemoryStream& stream,
uint32_t payload_length,
ICMPExtensionsStructure& extensions) {
if (!stream) {
return;
}
// Check if this is one of the types defined in RFC 4884
const uint32_t minimum_payload = ICMPExtensionsStructure::MINIMUM_ICMP_PAYLOAD;
// Check if we actually have this amount of data and whether it's more than
// the minimum encapsulated packet size
const uint8_t* extensions_ptr;
uint32_t extensions_size;
if (stream.can_read(payload_length) && payload_length >= minimum_payload) {
extensions_ptr = stream.pointer() + payload_length;
extensions_size = stream.size() - payload_length;
}
else if (stream.can_read(minimum_payload)) {
// This packet might be non-rfc compliant. In that case the length
// field can contain garbage.
extensions_ptr = stream.pointer() + minimum_payload;
extensions_size = stream.size() - minimum_payload;
}
else {
// No more special cases, this doesn't have extensions
return;
}
if (ICMPExtensionsStructure::validate_extensions(extensions_ptr, extensions_size)) {
extensions = ICMPExtensionsStructure(extensions_ptr, extensions_size);
stream.size(stream.size() - extensions_size);
}
}
PDU::PDUType ip_type_to_pdu_flag(Constants::IP::e flag) {
switch(flag) {
case Constants::IP::PROTO_IPIP:
return PDU::IP;
case Constants::IP::PROTO_IPV6:
return PDU::IPv6;
case Constants::IP::PROTO_TCP:
return PDU::TCP;
case Constants::IP::PROTO_UDP:
return PDU::UDP;
case Constants::IP::PROTO_ICMP:
return PDU::ICMP;
case Constants::IP::PROTO_ICMPV6:
return PDU::ICMPv6;
case Constants::IP::PROTO_AH:
return PDU::IPSEC_AH;
case Constants::IP::PROTO_ESP:
return PDU::IPSEC_ESP;
default:
return PDU::UNKNOWN;
};
}
bool increment(IPv4Address &addr) {
uint32_t addr_int = Endian::be_to_host<uint32_t>(addr);
bool reached_end = ++addr_int == 0xffffffff;
addr = IPv4Address(Endian::be_to_host<uint32_t>(addr_int));
return reached_end;
}
bool increment(IPv6Address& addr) {
return increment_buffer(addr);
}
bool decrement(IPv4Address& addr) {
uint32_t addr_int = Endian::be_to_host<uint32_t>(addr);
bool reached_end = --addr_int == 0;
addr = IPv4Address(Endian::be_to_host<uint32_t>(addr_int));
return reached_end;
}
bool decrement(IPv6Address& addr) {
return decrement_buffer(addr);
}
int seq_compare(uint32_t seq1, uint32_t seq2) {
// As defined by RFC 1982 - 2 ^ (SERIAL_BITS - 1)
static const uint32_t seq_number_diff = 2147483648U;
if (seq1 == seq2) {
return 0;
}
if (seq1 < seq2) {
return (seq2 - seq1 < seq_number_diff) ? -1 : 1;
}
else {
return (seq1 - seq2 > seq_number_diff) ? -1 : 1;
}
}
IPv4Address last_address_from_mask(IPv4Address addr, IPv4Address mask) {
uint32_t addr_int = Endian::be_to_host<uint32_t>(addr),
mask_int = Endian::be_to_host<uint32_t>(mask);
return IPv4Address(Endian::host_to_be(addr_int | ~mask_int));
}
IPv6Address last_address_from_mask(IPv6Address addr, const IPv6Address& mask) {
IPv6Address::iterator addr_iter = addr.begin();
for (IPv6Address::const_iterator it = mask.begin(); it != mask.end(); ++it, ++addr_iter) {
*addr_iter = *addr_iter | ~*it;
}
return addr;
}
} // namespace Internals
} // namespace Tins