1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-23 02:35:57 +01:00
Files
libtins/include/sniffer.h
2012-08-15 08:36:37 -03:00

182 lines
6.2 KiB
C++

/*
* libtins is a net packet wrapper library for crafting and
* interpreting sniffed packets.
*
* Copyright (C) 2011 Nasel
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef TINS_SNIFFER_H
#define TINS_SNIFFER_H
#include <pcap.h>
#include <string>
#include <stdexcept>
#include "pdu.h"
#include "ethernetII.h"
#include "radiotap.h"
namespace Tins {
/**
* \brief Sniffer class can be used to sniff packets using filters.
*
* This class uses a given filter to sniff packets and allow the user
* to handle them. Each time a filter is set, it's used until a new one
* is set. Both Sniffer::next_packet and Sniffer::sniff_loop have an
* optional filter parameter. If a filter is set using those parameter,
* the previously set filter is freed and the new one is used.
*/
class Sniffer {
public:
/**
* \brief Creates an instance of sniffer.
* \param device The device which will be sniffed.
* \param max_packet_size The maximum packet size to be read.
* \param promisc bool indicating wether to put the interface in promiscuous mode.
* \param filter A capture filter to compile and use for sniffing sessions.(optional);
*/
Sniffer(const std::string &device, unsigned max_packet_size,
bool promisc = false, const std::string &filter = "");
/**
* \brief Sniffer destructor.
* This frees all memory used by the pcap handle.
*/
~Sniffer();
/**
* \brief Compiles a filter and uses it to capture one packet.
*
* This method returns the first sniffed packet that matches the
* sniffer's filter, or the first sniffed packet if no filter has
* been set.
* \return The captured packet, matching the given filter, 0 if an
* error occured(probably compiling the filter).
*/
PDU *next_packet();
/**
* \brief Starts a sniffing loop, using a callback object for every
* sniffed packet.
*
* The callback object must implement an operator with the
* following(or compatible) signature:
*
* bool operator()(PDU*);
*
* This operator will be called using the sniffed packets
* as arguments. The callback object <b>must not</b> delete the
* PDU parameter.
*
* Note that the Functor object will be copied using its copy
* constructor, so that object should be some kind of proxy to
* another object which will process the packets(e.g. std::bind).
*
* \param cback_handler The callback handler object which should process packets.
* \param max_packets The maximum amount of packets to sniff. 0 == infinite.
*/
template<class Functor>
void sniff_loop(Functor function, uint32_t max_packets = 0);
/**
* \brief Sets a filter on this sniffer.
* \param filter The filter to be set.
* \return True iif it was possible to apply the filter.
*/
bool set_filter(const std::string &filter);
/**
* \brief Stops sniffing loops.
*/
void stop_sniff();
private:
template<class Functor>
struct LoopData {
pcap_t *handle;
Functor c_handler;
bool wired;
LoopData(pcap_t *_handle, const Functor _handler,
bool is_wired)
: handle(_handle), c_handler(_handler), wired(is_wired) { }
};
Sniffer(const Sniffer&);
Sniffer &operator=(const Sniffer&);
bool compile_set_filter(const std::string &filter, bpf_program &prog);
template<class Functor>
static void callback_handler(u_char *args, const struct pcap_pkthdr *header, const u_char *packet);
pcap_t *handle;
bpf_u_int32 ip, mask;
bpf_program actual_filter;
bool wired;
};
template<class Functor>
void Tins::Sniffer::sniff_loop(Functor function, uint32_t max_packets) {
LoopData<Functor> data(handle, function, wired);
pcap_loop(handle, max_packets, &Sniffer::callback_handler<Functor>, (u_char*)&data);
}
template<class Functor>
void Tins::Sniffer::callback_handler(u_char *args, const struct pcap_pkthdr *header, const u_char *packet) {
try {
PDU *pdu = 0;
LoopData<Functor> *data = reinterpret_cast<LoopData<Functor>*>(args);
if(data->wired)
pdu = new Tins::EthernetII((const uint8_t*)packet, header->caplen);
else
pdu = new Tins::RadioTap((const uint8_t*)packet, header->caplen);
bool ret_val = data->c_handler(pdu);
delete pdu;
if(!ret_val)
pcap_breakloop(data->handle);
}
catch(...) {
}
}
template<class T>
class HandlerProxy {
public:
typedef T* ptr_type;
typedef bool (T::*fun_type)(PDU*) ;
HandlerProxy(ptr_type ptr, fun_type function)
: object(ptr), fun(function) {}
bool operator()(PDU *pdu) {
return (object->*fun)(pdu);
}
private:
ptr_type object;
fun_type fun;
};
template<class T>
HandlerProxy<T> make_sniffer_handler(T *ptr, typename HandlerProxy<T>::fun_type function)
{
return HandlerProxy<T>(ptr, function);
}
};
#endif // TINS_SNIFFER_H