1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-22 18:25:57 +01:00
Files
libtins/include/sniffer.h
2013-04-23 20:33:00 -03:00

353 lines
12 KiB
C++

/*
* Copyright (c) 2012, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef TINS_SNIFFER_H
#define TINS_SNIFFER_H
#include <pcap.h>
#include <string>
#include <memory>
#include <stdexcept>
#include "pdu.h"
#include "ethernetII.h"
#include "radiotap.h"
#include "packet.h"
#include "loopback.h"
#include "dot11.h"
#include "sll.h"
#include "cxxstd.h"
#include "exceptions.h"
namespace Tins {
/**
* \class BaseSniffer
* \brief Base class for sniffers.
*
* This class implements the basic sniffing operations. Subclasses
* should only initialize this object using a pcap_t pointer, which
* will be used to extract packets.
*
* Initialization must be done using the BaseSniffer::init method.
*/
class BaseSniffer {
public:
#if TINS_IS_CXX11
/**
* \brief Move constructor.
* This constructor is available only in C++11.
*/
BaseSniffer(BaseSniffer &&rhs) noexcept
{
*this = std::move(rhs);
}
/**
* \brief Move assignment operator.
* This opeartor is available only in C++11.
*/
BaseSniffer& operator=(BaseSniffer &&rhs) noexcept
{
handle = 0;
mask = rhs.mask;
iface_type = rhs.iface_type;
actual_filter.bf_insns = 0;
std::swap(handle, rhs.handle);
std::swap(actual_filter, rhs.actual_filter);
return *this;
}
#endif
/**
* \brief Sniffer destructor.
* This frees all memory used by the pcap handle.
*/
virtual ~BaseSniffer();
/**
* \brief Compiles a filter and uses it to capture one packet.
*
* This method returns the first sniffed packet that matches the
* sniffer's filter, or the first sniffed packet if no filter has
* been set.
*
* The return type is a thin wrapper over a PDU* and a Timestamp
* object. This wrapper can be both implicitly converted to a
* PDU* and a Packet object. So doing this:
*
* \code
* Sniffer s(...);
* std::unique_ptr<PDU> pdu(s.next_packet());
* // Packet takes care of the PDU*.
* Packet packet(s.next_packet());
* \endcode
*
* Is fine, but this:
*
* \code
* // bad!!
* PtrPacket p = s.next_packet();
*
* \endcode
*
* Is not, since PtrPacket can't be copy constructed.
*
* \sa Packet::release_pdu
*
* \return The captured packet, matching the given filter.
* If an error occured(probably compiling the filter), PtrPacket::pdu
* will return 0. Caller takes ownership of the PDU * stored in
* the PtrPacket.
*/
PtrPacket next_packet();
/**
* \brief Starts a sniffing loop, using a callback object for every
* sniffed packet.
*
* The callback object must implement an operator with some of
* the following(or compatible) signatures:
*
* \code
* bool operator()(PDU&);
* bool operator()(RefPacket&);
* \endcode
*
* This operator will be called using the sniffed packets
* as arguments. You can modify the parameter argument as you wish.
* Calling PDU methods like PDU::release_inner_pdu is perfectly
* valid.
*
* The callback taking a RefPacket will contain a timestamp
* indicating the moment in which the packet was taken out of
* the wire/pcap file.
*
* Note that the Functor object will be copied using its copy
* constructor, so that object should be some kind of proxy to
* another object which will process the packets(e.g. std::bind).
*
* \sa RefPacket
*
* \param cback_handler The callback handler object which should process packets.
* \param max_packets The maximum amount of packets to sniff. 0 == infinite.
*/
template<class Functor>
void sniff_loop(Functor function, uint32_t max_packets = 0);
/**
* \brief Sets a filter on this sniffer.
* \param filter The filter to be set.
* \return True iif it was possible to apply the filter.
*/
bool set_filter(const std::string &filter);
/**
* \brief Stops sniffing loops.
*/
void stop_sniff();
/**
* \brief Gets the file descriptor associated with the sniffer.
*/
int get_fd();
protected:
/**
* Default constructor.
*/
BaseSniffer();
/**
* \brief Initialices this BaseSniffer.
*
* \param phandle The pcap handle to be used for sniffing.
* \param filter The pcap filter which will be applied to the
* stream.
* \param if_mask The interface's subnet mask. If 0 is provided,
* then some IP broadcast tests won't work correctly.
*/
void init(pcap_t *phandle, const std::string &filter, bpf_u_int32 if_mask);
private:
template<class Functor>
struct LoopData {
pcap_t *handle;
Functor c_handler;
int iface_type;
LoopData(pcap_t *_handle, const Functor _handler,
int if_type)
: handle(_handle), c_handler(_handler), iface_type(if_type)
{ }
};
struct PCapLoopBreaker {
bool &went_well;
pcap_t *handle;
PCapLoopBreaker(bool &went_well, pcap_t *handle)
: went_well(went_well), handle(handle) { }
~PCapLoopBreaker() {
if(!went_well)
pcap_breakloop(handle);
}
};
BaseSniffer(const BaseSniffer&);
BaseSniffer &operator=(const BaseSniffer&);
template<class ConcretePDU, class Functor>
static bool call_functor(LoopData<Functor> *data, const u_char *packet, const struct pcap_pkthdr *header);
bool compile_set_filter(const std::string &filter, bpf_program &prog);
template<class Functor>
static void callback_handler(u_char *args, const struct pcap_pkthdr *header, const u_char *packet);
pcap_t *handle;
bpf_u_int32 mask;
bpf_program actual_filter;
int iface_type;
};
/**
* \class Sniffer
* \brief Sniffs packets using pcap filters.
*
* This class uses a given filter to sniff packets and allow the user
* to handle them. Each time a filter is set, it's used until a new one
* is set. Both Sniffer::next_packet and Sniffer::sniff_loop have an
* optional filter parameter. If a filter is set using those parameter,
* the previously set filter is freed and the new one is used.
*/
class Sniffer : public BaseSniffer {
public:
/**
* \brief Constructs an instance of Sniffer.
* \param device The device which will be sniffed.
* \param max_packet_size The maximum packet size to be read.
* \param promisc bool indicating wether to put the interface in promiscuous mode.(optional)
* \param filter A capture filter to be used on the sniffing session.(optional);
*/
Sniffer(const std::string &device, unsigned max_packet_size,
bool promisc = false, const std::string &filter = "");
};
/**
* \class FileSniffer
* \brief Parses pcap files and interprets the packets in it.
*
* This class acts exactly in the same way that Sniffer, but reads
* packets from a pcap file instead of an interface.
*/
class FileSniffer : public BaseSniffer {
public:
/**
* \brief Constructs an instance of FileSniffer.
* \param file_name The pcap file which will be parsed.
* \param filter A capture filter to be used on the file.(optional);
*/
FileSniffer(const std::string &file_name, const std::string &filter = "");
};
template<class Functor>
void Tins::BaseSniffer::sniff_loop(Functor function, uint32_t max_packets) {
LoopData<Functor> data(handle, function, iface_type);
pcap_loop(handle, max_packets, &BaseSniffer::callback_handler<Functor>, (u_char*)&data);
}
template<class ConcretePDU, class Functor>
bool Tins::BaseSniffer::call_functor(LoopData<Functor> *data, const u_char *packet,
const struct pcap_pkthdr *header)
{
ConcretePDU some_pdu((const uint8_t*)packet, header->caplen);
Timestamp ts(header->ts);
RefPacket pck(some_pdu, ts);
return data->c_handler(pck);
}
template<class Functor>
void Tins::BaseSniffer::callback_handler(u_char *args, const struct pcap_pkthdr *header, const u_char *packet) {
bool ret_val(true);
LoopData<Functor> *data = reinterpret_cast<LoopData<Functor>*>(args);
PCapLoopBreaker _(ret_val, data->handle);
try {
Internals::smart_ptr<PDU>::type pdu;
if(data->iface_type == DLT_EN10MB)
ret_val = call_functor<Tins::EthernetII>(data, packet, header);
else if(data->iface_type == DLT_IEEE802_11_RADIO)
ret_val = call_functor<Tins::RadioTap>(data, packet, header);
else if(data->iface_type == DLT_IEEE802_11) {
Internals::smart_ptr<PDU>::type pdu(
Tins::Dot11::from_bytes((const uint8_t*)packet, header->caplen)
);
if(pdu.get()) {
RefPacket pck(*pdu, header->ts);
ret_val = data->c_handler(pck);
}
}
else if(data->iface_type == DLT_NULL)
ret_val = call_functor<Tins::Loopback>(data, packet, header);
else if(data->iface_type == DLT_LINUX_SLL)
ret_val = call_functor<Tins::SLL>(data, packet, header);
}
catch(malformed_packet&) {
ret_val = true;
}
catch(pdu_not_found&) {
ret_val = true;
}
}
template<class T>
class HandlerProxy {
public:
typedef T* ptr_type;
typedef bool (T::*fun_type)(PDU&) ;
HandlerProxy(ptr_type ptr, fun_type function)
: object(ptr), fun(function) {}
bool operator()(PDU &pdu) {
return (object->*fun)(pdu);
}
private:
ptr_type object;
fun_type fun;
};
template<class T>
HandlerProxy<T> make_sniffer_handler(T *ptr, typename HandlerProxy<T>::fun_type function)
{
return HandlerProxy<T>(ptr, function);
}
}
#endif // TINS_SNIFFER_H