1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-23 02:35:57 +01:00
Files
libtins/src/icmp.cpp
2015-12-27 04:38:31 -08:00

295 lines
9.4 KiB
C++

/*
* Copyright (c) 2014, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdexcept>
#include <cstring>
#ifndef _WIN32
#include <netinet/in.h>
#endif
#include "rawpdu.h"
#include "utils.h"
#include "exceptions.h"
#include "icmp.h"
#include "memory_helpers.h"
using Tins::Memory::InputMemoryStream;
using Tins::Memory::OutputMemoryStream;
namespace Tins {
ICMP::ICMP(Flags flag)
: _orig_timestamp_or_address_mask(), _recv_timestamp(), _trans_timestamp()
{
std::memset(&_icmp, 0, sizeof(icmphdr));
type(flag);
}
ICMP::ICMP(const uint8_t *buffer, uint32_t total_sz)
{
InputMemoryStream stream(buffer, total_sz);
stream.read(_icmp);
if(type() == TIMESTAMP_REQUEST || type() == TIMESTAMP_REPLY) {
original_timestamp(stream.read<uint32_t>());
receive_timestamp(stream.read<uint32_t>());
transmit_timestamp(stream.read<uint32_t>());
}
else if(type() == ADDRESS_MASK_REQUEST || type() == ADDRESS_MASK_REPLY) {
address_mask(address_type(stream.read<uint32_t>()));
}
// Attempt to parse ICMP extensions
try_parse_extensions(stream);
if (stream) {
inner_pdu(new RawPDU(stream.pointer(), stream.size()));
}
}
void ICMP::code(uint8_t new_code) {
_icmp.code = new_code;
}
void ICMP::type(Flags new_type) {
_icmp.type = new_type;
}
void ICMP::checksum(uint16_t new_check) {
_icmp.check = Endian::host_to_be(new_check);
}
void ICMP::id(uint16_t new_id) {
_icmp.un.echo.id = Endian::host_to_be(new_id);
}
void ICMP::sequence(uint16_t new_seq) {
_icmp.un.echo.sequence = Endian::host_to_be(new_seq);
}
void ICMP::gateway(address_type new_gw) {
_icmp.un.gateway = Endian::host_to_be(static_cast<uint32_t>(new_gw));
}
void ICMP::mtu(uint16_t new_mtu) {
_icmp.un.frag.mtu = Endian::host_to_be(new_mtu);
}
void ICMP::pointer(uint8_t new_pointer) {
_icmp.un.rfc4884.pointer = new_pointer;
}
void ICMP::original_timestamp(uint32_t new_timestamp) {
_orig_timestamp_or_address_mask = Endian::host_to_be(new_timestamp);
}
void ICMP::receive_timestamp(uint32_t new_timestamp) {
_recv_timestamp = Endian::host_to_be(new_timestamp);
}
void ICMP::transmit_timestamp(uint32_t new_timestamp) {
_trans_timestamp = Endian::host_to_be(new_timestamp);
}
void ICMP::address_mask(address_type new_mask) {
_orig_timestamp_or_address_mask = Endian::host_to_be(static_cast<uint32_t>(new_mask));
}
uint32_t ICMP::header_size() const {
uint32_t extra = 0;
if(type() == TIMESTAMP_REQUEST || type() == TIMESTAMP_REPLY)
extra = sizeof(uint32_t) * 3;
else if(type() == ADDRESS_MASK_REQUEST || type() == ADDRESS_MASK_REPLY)
extra = sizeof(uint32_t);
return sizeof(icmphdr) + extra;
}
uint32_t ICMP::trailer_size() const {
uint32_t output = 0;
if (has_extensions()) {
output += extensions_.size();
if (inner_pdu()) {
// This gets how much padding we'll use.
// If the next pdu size is lower than 128 bytes, then padding = 128 - pdu size
// If the next pdu size is greater than 128 bytes,
// then padding = pdu size padded to next 32 bit boundary - pdu size
const uint32_t upper_bound = std::max(get_adjusted_inner_pdu_size(), 128U);
output += upper_bound - inner_pdu()->size();
}
}
return output;
}
void ICMP::set_echo_request(uint16_t id, uint16_t seq) {
type(ECHO_REQUEST);
this->id(id);
sequence(seq);
}
void ICMP::set_echo_reply(uint16_t id, uint16_t seq) {
type(ECHO_REPLY);
this->id(id);
sequence(seq);
}
void ICMP::set_info_request(uint16_t id, uint16_t seq) {
type(INFO_REQUEST);
code(0);
this->id(id);
sequence(seq);
}
void ICMP::set_info_reply(uint16_t id, uint16_t seq) {
type(INFO_REPLY);
code(0);
this->id(id);
sequence(seq);
}
void ICMP::set_dest_unreachable() {
type(DEST_UNREACHABLE);
}
void ICMP::set_time_exceeded(bool ttl_exceeded) {
type(TIME_EXCEEDED);
code((ttl_exceeded) ? 0 : 1);
}
void ICMP::set_param_problem(bool set_pointer, uint8_t bad_octet) {
type(PARAM_PROBLEM);
if(set_pointer) {
code(0);
pointer(bad_octet);
}
else
code(1);
}
void ICMP::set_source_quench() {
type(SOURCE_QUENCH);
}
void ICMP::set_redirect(uint8_t icode, address_type address) {
type(REDIRECT);
code(icode);
gateway(address);
}
void ICMP::use_length_field(bool value) {
// We just need a non 0 value here, we'll use the right value on
// write_serialization
_icmp.un.rfc4884.length = value ? 1 : 0;
}
void ICMP::write_serialization(uint8_t *buffer, uint32_t total_sz, const PDU *) {
OutputMemoryStream stream(buffer, total_sz);
// If extensions are allowed and we have to set the length field
if (are_extensions_allowed()) {
uint32_t length_value = get_adjusted_inner_pdu_size();
// If the next pdu size is greater than 128, we are forced to set the length field
if (length() != 0 || length_value > 128) {
length_value = length_value ? std::max(length_value, 128U) : 0;
// This field uses 32 bit words as the unit
_icmp.un.rfc4884.length = length_value / sizeof(uint32_t);
}
}
// Write the header using checksum 0
_icmp.check = 0;
stream.write(_icmp);
if(type() == TIMESTAMP_REQUEST || type() == TIMESTAMP_REPLY) {
stream.write(original_timestamp());
stream.write(receive_timestamp());
stream.write(transmit_timestamp());
}
else if(type() == ADDRESS_MASK_REQUEST || type() == ADDRESS_MASK_REPLY) {
stream.write(address_mask());
}
if (has_extensions()) {
uint8_t* extensions_ptr = buffer + sizeof(icmphdr);
if (inner_pdu()) {
// Get the size of the next pdu, padded to the next 32 bit boundary
uint32_t inner_pdu_size = get_adjusted_inner_pdu_size();
// If it's lower than 128, we need to padd enough zeroes to make it 128 bytes long
if (inner_pdu_size < 128) {
memset(extensions_ptr + inner_pdu_size, 0, 128 - inner_pdu_size);
inner_pdu_size = 128;
}
else {
// If the packet has to be padded to 32 bits, append the amount
// of zeroes we need
uint32_t diff = inner_pdu_size - inner_pdu()->size();
memset(extensions_ptr + inner_pdu_size, 0, diff);
}
extensions_ptr += inner_pdu_size;
}
// Now serialize the exensions where they should be
extensions_.serialize(extensions_ptr, total_sz - (extensions_ptr - buffer));
}
// Calculate checksum
uint32_t checksum = Utils::do_checksum(buffer, buffer + total_sz);
while (checksum >> 16) {
checksum = (checksum & 0xffff) + (checksum >> 16);
}
// Write back only the 2 checksum bytes
_icmp.check = Endian::host_to_be<uint16_t>(~checksum);
memcpy(buffer + 2, &_icmp.check, sizeof(uint16_t));
}
uint32_t ICMP::get_adjusted_inner_pdu_size() const {
// This gets the size of the next pdu, padded to the next 32 bit word boundary
return Internals::get_padded_icmp_inner_pdu_size(inner_pdu(), sizeof(uint32_t));
}
void ICMP::try_parse_extensions(InputMemoryStream& stream) {
// Check if this is one of the types defined in RFC 4884
if (are_extensions_allowed()) {
Internals::try_parse_icmp_extensions(stream, length() * sizeof(uint32_t),
extensions_);
}
}
bool ICMP::are_extensions_allowed() const {
return type() == DEST_UNREACHABLE || type() == TIME_EXCEEDED || type() == PARAM_PROBLEM;
}
bool ICMP::matches_response(const uint8_t *ptr, uint32_t total_sz) const {
if(total_sz < sizeof(icmphdr))
return false;
const icmphdr *icmp_ptr = (const icmphdr*)ptr;
if((_icmp.type == ECHO_REQUEST && icmp_ptr->type == ECHO_REPLY) ||
(_icmp.type == TIMESTAMP_REQUEST && icmp_ptr->type == TIMESTAMP_REPLY) ||
(_icmp.type == ADDRESS_MASK_REQUEST && icmp_ptr->type == ADDRESS_MASK_REPLY)) {
return icmp_ptr->un.echo.id == _icmp.un.echo.id && icmp_ptr->un.echo.sequence == _icmp.un.echo.sequence;
}
return false;
}
} // namespace Tins