1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-23 02:35:57 +01:00
Files
libtins/src/crypto.cpp
2017-06-05 20:44:03 -07:00

675 lines
24 KiB
C++

/*
* Copyright (c) 2017, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "crypto.h"
#ifdef TINS_HAVE_DOT11
#ifdef TINS_HAVE_WPA2_DECRYPTION
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/aes.h>
#endif // TINS_HAVE_WPA2_DECRYPTION
#include "dot11/dot11_data.h"
#include "dot11/dot11_beacon.h"
#include "exceptions.h"
using std::string;
using std::make_pair;
using std::equal;
using std::copy;
using std::min;
using std::max;
using std::lexicographical_compare;
using std::fill;
using std::runtime_error;
namespace Tins {
namespace Crypto {
WEPDecrypter::WEPDecrypter()
: key_buffer_(4) {
}
void WEPDecrypter::add_password(const address_type& addr, const string& password) {
passwords_[addr] = password;
key_buffer_.resize(max(3 + password.size(), key_buffer_.size()));
}
void WEPDecrypter::remove_password(const address_type& addr) {
passwords_.erase(addr);
}
bool WEPDecrypter::decrypt(PDU& pdu) {
Dot11Data* dot11 = pdu.find_pdu<Dot11Data>();
if (dot11) {
RawPDU* raw = dot11->find_pdu<RawPDU>();
if (raw) {
address_type addr;
if (!dot11->from_ds() && !dot11->to_ds()) {
addr = dot11->addr3();
}
else if (!dot11->from_ds() && dot11->to_ds()) {
addr = dot11->addr1();
}
else if (dot11->from_ds() && !dot11->to_ds()) {
addr = dot11->addr2();
}
else {
// ????
addr = dot11->addr3();
}
passwords_type::iterator it = passwords_.find(addr);
if (it != passwords_.end()) {
dot11->inner_pdu(decrypt(*raw, it->second));
// If its valid, then return true
if (dot11->inner_pdu()) {
// it's no longer encrypted.
dot11->wep(0);
return true;
}
}
}
}
return false;
}
PDU* WEPDecrypter::decrypt(RawPDU& raw, const string& password) {
RawPDU::payload_type& pload = raw.payload();
// We require at least the IV, the encrypted checksum and something to decrypt
if (pload.size() <= 8) {
return 0;
}
copy(pload.begin(), pload.begin() + 3, key_buffer_.begin());
copy(password.begin(), password.end(), key_buffer_.begin() + 3);
// Generate the key
RC4Key key(key_buffer_.begin(), key_buffer_.begin() + password.size() + 3);
rc4(pload.begin() + 4, pload.end(), key, pload.begin());
uint32_t payload_size = static_cast<uint32_t>(pload.size() - 8);
uint32_t crc = Utils::crc32(&pload[0], payload_size);
if (pload[pload.size() - 8] != (crc & 0xff) ||
pload[pload.size() - 7] != ((crc >> 8) & 0xff) ||
pload[pload.size() - 6] != ((crc >> 16) & 0xff) ||
pload[pload.size() - 5] != ((crc >> 24) & 0xff)) {
return 0;
}
try {
return new SNAP(&pload[0], payload_size);
}
catch (exception_base&) {
return 0;
}
}
#ifdef TINS_HAVE_WPA2_DECRYPTION
// WPA2Decrypter
using WPA2::SessionKeys;
const HWAddress<6>& min(const HWAddress<6>& lhs, const HWAddress<6>& rhs) {
return lhs < rhs ? lhs : rhs;
}
const HWAddress<6>& max(const HWAddress<6>& lhs, const HWAddress<6>& rhs) {
return lhs < rhs ? rhs : lhs;
}
template<typename InputIterator1, typename InputIterator2, typename OutputIterator>
void xor_range(InputIterator1 src1, InputIterator2 src2, OutputIterator dst, size_t sz) {
for (size_t i = 0; i < sz; ++i) {
*dst++ = *src1++ ^ *src2++;
}
}
const uint16_t sbox_table[2][256]= {
{
0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A
},
{
0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491,
0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC,
0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB,
0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B,
0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83,
0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A,
0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F,
0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA,
0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B,
0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713,
0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6,
0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85,
0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411,
0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B,
0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1,
0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF,
0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E,
0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6,
0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B,
0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD,
0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8,
0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2,
0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049,
0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810,
0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197,
0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F,
0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C,
0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927,
0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733,
0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5,
0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0,
0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C
}
};
uint16_t sbox(uint16_t i) {
return sbox_table[0][i & 0xff] ^ sbox_table[1][(i >> 8)];
}
uint16_t join_bytes(uint8_t b1, uint8_t b2) {
return (static_cast<uint16_t>(b1) << 8) | b2;
}
uint16_t rotate(uint16_t value) {
return ((value >> 1) & 0x7fff) | (value << 15);
}
uint16_t upper_byte(uint16_t value) {
return (value >> 8) & 0xff;
}
uint16_t lower_byte(uint16_t value) {
return value & 0xff;
}
HWAddress<6> get_bssid(const Dot11Data& dot11) {
if (dot11.from_ds() && !dot11.to_ds()) {
return dot11.addr3();
}
else if (!dot11.from_ds() && dot11.to_ds()) {
return dot11.addr2();
}
else {
return dot11.addr2();
}
}
namespace WPA2 {
const size_t SessionKeys::PTK_SIZE = 80;
const size_t SessionKeys::PMK_SIZE = 32;
SessionKeys::SessionKeys() {
}
SessionKeys::SessionKeys(const ptk_type& ptk, bool is_ccmp)
: ptk_(ptk), is_ccmp_(is_ccmp) {
if (ptk_.size() != PTK_SIZE) {
throw invalid_handshake();
}
}
SessionKeys::SessionKeys(const RSNHandshake& hs, const pmk_type& pmk)
: ptk_(PTK_SIZE), is_ccmp_(false) {
if (pmk.size() != PMK_SIZE) {
throw invalid_handshake();
}
uint8_t PKE[100] = "Pairwise key expansion";
uint8_t MIC[20];
is_ccmp_ = (hs.handshake()[3].key_descriptor() == 2);
min(hs.client_address(), hs.supplicant_address()).copy(PKE + 23);
max(hs.client_address(), hs.supplicant_address()).copy(PKE + 29);
const uint8_t* nonce1 = hs.handshake()[1].nonce(),
*nonce2 = hs.handshake()[2].nonce();
if (lexicographical_compare(nonce1, nonce1 + 32, nonce2, nonce2 + 32)) {
copy(nonce1, nonce1 + 32, PKE + 35);
copy(nonce2, nonce2 + 32, PKE + 67);
}
else {
copy(nonce2, nonce2 + 32, PKE + 35);
copy(nonce1, nonce1 + 32, PKE + 67);
}
for (int i(0); i < 4; ++i) {
PKE[99] = i;
HMAC(EVP_sha1(), &pmk[0], pmk.size(), PKE, 100, &ptk_[0] + i * 20, 0);
}
RSNEAPOL& last_hs = const_cast<RSNEAPOL&>(hs.handshake()[3]);
PDU::serialization_type buffer = last_hs.serialize();
fill(buffer.begin() + 81, buffer.begin() + 81 + 16, 0);
if (is_ccmp_) {
HMAC(EVP_sha1(), &ptk_[0], 16, &buffer[0], buffer.size(), MIC, 0);
}
else {
HMAC(EVP_md5(), &ptk_[0], 16, &buffer[0], buffer.size(), MIC, 0);
}
if (!equal(MIC, MIC + RSNEAPOL::mic_size, last_hs.mic())) {
throw invalid_handshake();
}
}
SNAP* SessionKeys::ccmp_decrypt_unicast(const Dot11Data& dot11, RawPDU& raw) const {
RawPDU::payload_type& pload = raw.payload();
uint8_t MIC[16] = {0};
uint8_t PN[6] = {
pload[7],
pload[6],
pload[5],
pload[4],
pload[1],
pload[0]
};
uint8_t AAD[32] = {0};
AAD[0] = 0;
AAD[1] = 22 + 6 * int(dot11.from_ds() && dot11.to_ds());
if (dot11.subtype() == Dot11::QOS_DATA_DATA) {
AAD[1] += 2;
}
AAD[2] = dot11.protocol() | (dot11.type() << 2) | ((dot11.subtype() << 4) & 0x80);
AAD[3] = 0x40 | dot11.to_ds() | (dot11.from_ds() << 1) |
(dot11.more_frag() << 2) | (dot11.order() << 7);
dot11.addr1().copy(AAD + 4);
dot11.addr2().copy(AAD + 10);
dot11.addr3().copy(AAD + 16);
AAD[22] = dot11.frag_num();
AAD[23] = 0;
if (dot11.from_ds() && dot11.to_ds()) {
dot11.addr4().copy(AAD + 24);
}
AES_KEY ctx;
AES_set_encrypt_key(&ptk_[0] + 32, 128, &ctx);
uint8_t crypted_block[16];
size_t total_sz = raw.payload_size() - 16, offset = 8, blocks = (total_sz + 15) / 16;
uint8_t counter[16];
counter[0] = 0x59;
counter[1] = 0;
dot11.addr2().copy(counter + 2);
copy(PN, PN + 6, counter + 8);
counter[14] = (total_sz >> 8) & 0xff;
counter[15] = total_sz & 0xff;
if (dot11.subtype() == Dot11::QOS_DATA_DATA) {
const uint32_t offset = (dot11.from_ds() && dot11.to_ds()) ? 30 : 24;
AAD[offset] = static_cast<const Dot11QoSData&>(dot11).qos_control() & 0x0f;
counter[1] = AAD[offset];
}
AES_encrypt(counter, MIC, &ctx);
xor_range(MIC, AAD, MIC, 16);
AES_encrypt(MIC, MIC, &ctx);
xor_range(MIC, AAD + 16, MIC, 16);
AES_encrypt(MIC, MIC, &ctx);
counter[0] = 1;
counter[14] = counter[15] = 0;
AES_encrypt(counter, crypted_block, &ctx);
uint8_t nice_MIC[8];
copy(pload.begin() + pload.size() - 8, pload.end(), nice_MIC);
xor_range(crypted_block, nice_MIC, nice_MIC, 8);
for (size_t i = 1; i <= blocks; ++i) {
size_t block_sz = (i == blocks) ? (total_sz % 16) : 16;
if (block_sz == 0) {
block_sz = 16;
}
counter[14] = (i >> 8) & 0xff;
counter[15] = i & 0xff;
AES_encrypt(counter, crypted_block, &ctx );
xor_range(crypted_block, &pload[offset], &pload[(i - 1) * 16], block_sz);
xor_range(MIC, &pload[(i - 1) * 16], MIC, block_sz);
AES_encrypt(MIC, MIC, &ctx);
offset += block_sz;
}
if (equal(nice_MIC, nice_MIC + sizeof(nice_MIC), MIC)) {
return new SNAP(&pload[0], total_sz);
}
else {
return 0;
}
}
RC4Key SessionKeys::generate_rc4_key(const Dot11Data& dot11, const RawPDU& raw) const {
const RawPDU::payload_type& pload = raw.payload();
const uint8_t* tk = &ptk_[0] + 32;
Internals::byte_array<16> rc4_key;
uint16_t ppk[6];
const Dot11::address_type addr = dot11.addr2();
// Phase 1
ppk[0] = join_bytes(pload[4], pload[5]);
ppk[1] = join_bytes(pload[6], pload[7]);
ppk[2] = join_bytes(addr[1], addr[0]);
ppk[3] = join_bytes(addr[3], addr[2]);
ppk[4] = join_bytes(addr[5], addr[4]);
for (size_t i = 0; i < 4; ++i) {
ppk[0] += sbox(ppk[4] ^ join_bytes(tk[1], tk[0]));
ppk[1] += sbox(ppk[0] ^ join_bytes(tk[5], tk[4]));
ppk[2] += sbox(ppk[1] ^ join_bytes(tk[9], tk[8]));
ppk[3] += sbox(ppk[2] ^ join_bytes(tk[13], tk[12]));
ppk[4] += sbox(ppk[3] ^ join_bytes(tk[1], tk[0])) + 2*i;
ppk[0] += sbox(ppk[4] ^ join_bytes(tk[3], tk[2]));
ppk[1] += sbox(ppk[0] ^ join_bytes(tk[7], tk[6]));
ppk[2] += sbox(ppk[1] ^ join_bytes(tk[11], tk[10]));
ppk[3] += sbox(ppk[2] ^ join_bytes(tk[15], tk[14]));
ppk[4] += sbox(ppk[3] ^ join_bytes(tk[3], tk[2])) + 2*i + 1;
}
// Phase 2, step 1
ppk[5] = ppk[4] + join_bytes(pload[0], pload[2]);
// Phase 2, step 2
ppk[0] += sbox(ppk[5] ^ join_bytes(tk[1], tk[0]));
ppk[1] += sbox(ppk[0] ^ join_bytes(tk[3], tk[2]));
ppk[2] += sbox(ppk[1] ^ join_bytes(tk[5], tk[4]));
ppk[3] += sbox(ppk[2] ^ join_bytes(tk[7], tk[6]));
ppk[4] += sbox(ppk[3] ^ join_bytes(tk[9], tk[8]));
ppk[5] += sbox(ppk[4] ^ join_bytes(tk[11], tk[10]));
ppk[0] += rotate(ppk[5] ^ join_bytes(tk[13], tk[12]));
ppk[1] += rotate(ppk[0] ^ join_bytes(tk[15], tk[14]));
ppk[2] += rotate(ppk[1]);
ppk[3] += rotate(ppk[2]);
ppk[4] += rotate(ppk[3]);
ppk[5] += rotate(ppk[4]);
// Phase 2, step 3
rc4_key[0] = upper_byte(join_bytes(pload[0], pload[2]));
rc4_key[1] = (rc4_key[0] | 0x20) & 0x7f;
rc4_key[2] = lower_byte(join_bytes(pload[0], pload[2]));
rc4_key[3] = lower_byte((ppk[5] ^ join_bytes(tk[1], tk[0])) >> 1);
rc4_key[4] = lower_byte(ppk[0]);
rc4_key[5] = upper_byte(ppk[0]);
rc4_key[6] = lower_byte(ppk[1]);
rc4_key[7] = upper_byte(ppk[1]);
rc4_key[8] = lower_byte(ppk[2]);
rc4_key[9] = upper_byte(ppk[2]);
rc4_key[10] = lower_byte(ppk[3]);
rc4_key[11] = upper_byte(ppk[3]);
rc4_key[12] = lower_byte(ppk[4]);
rc4_key[13] = upper_byte(ppk[4]);
rc4_key[14] = lower_byte(ppk[5]);
rc4_key[15] = upper_byte(ppk[5]);
return RC4Key(rc4_key.begin(), rc4_key.end());
}
SNAP* SessionKeys::tkip_decrypt_unicast(const Dot11Data& dot11, RawPDU& raw) const {
// at least 20 bytes for IV + crc + stuff
if (raw.payload_size() <= 20) {
return 0;
}
Crypto::RC4Key key = generate_rc4_key(dot11, raw);
RawPDU::payload_type& pload = raw.payload();
rc4(pload.begin() + 8, pload.end(), key, pload.begin());
uint32_t crc = Utils::crc32(&pload[0], pload.size() - 12);
if (pload[pload.size() - 12] != (crc & 0xff) ||
pload[pload.size() - 11] != ((crc >> 8) & 0xff) ||
pload[pload.size() - 10] != ((crc >> 16) & 0xff) ||
pload[pload.size() - 9] != ((crc >> 24) & 0xff)) {
return 0;
}
return new SNAP(&pload[0], pload.size() - 20);
}
SNAP* SessionKeys::decrypt_unicast(const Dot11Data& dot11, RawPDU& raw) const {
return is_ccmp_ ?
ccmp_decrypt_unicast(dot11, raw) :
tkip_decrypt_unicast(dot11, raw);
}
const SessionKeys::ptk_type& SessionKeys::get_ptk() const {
return ptk_;
}
bool SessionKeys::uses_ccmp() const {
return is_ccmp_;
}
// supplicant_data
SupplicantData::SupplicantData(const string& psk, const string& ssid)
: pmk_(SessionKeys::PMK_SIZE), ssid_(ssid) {
PKCS5_PBKDF2_HMAC_SHA1(
psk.c_str(),
psk.size(),
(unsigned char *)ssid.c_str(),
ssid.size(),
4096,
pmk_.size(),
&pmk_[0]
);
}
const SupplicantData::pmk_type& SupplicantData::pmk() const {
return pmk_;
}
const string& SupplicantData::ssid() const {
return ssid_;
}
} // namespace WPA2
void WPA2Decrypter::add_ap_data(const string& psk, const string& ssid) {
pmks_.insert(make_pair(ssid, WPA2::SupplicantData(psk, ssid)));
}
void WPA2Decrypter::add_ap_data(const string& psk,
const string& ssid,
const address_type& addr) {
add_ap_data(psk, ssid);
add_access_point(ssid, addr);
}
void WPA2Decrypter::add_access_point(const string& ssid, const address_type& addr) {
pmks_map::const_iterator it = pmks_.find(ssid);
if (it == pmks_.end()) {
throw runtime_error("Supplicant data not registered");
}
aps_.insert(make_pair(addr, it->second));
#ifdef TINS_HAVE_WPA2_CALLBACKS
if (ap_found_callback_) {
ap_found_callback_(ssid, addr);
}
#endif // TINS_HAVE_WPA2_CALLBACKS
}
void WPA2Decrypter::add_decryption_keys(const addr_pair& addresses,
const SessionKeys& session_keys) {
addr_pair sorted_pair = make_addr_pair(addresses.first, addresses.second);
keys_[sorted_pair] = session_keys;
}
void WPA2Decrypter::try_add_keys(const Dot11Data& dot11, const RSNHandshake& hs) {
bssids_map::const_iterator it = find_ap(dot11);
if (it != aps_.end()) {
addr_pair addr_p = extract_addr_pair(dot11);
try {
SessionKeys session(hs, it->second.pmk());
keys_[addr_p] = session;
#ifdef TINS_HAVE_WPA2_CALLBACKS
if (handshake_captured_callback_) {
address_type bssid = dot11.bssid_addr();
address_type client = (bssid == addr_p.first) ? addr_p.second
: addr_p.first;
handshake_captured_callback_(it->second.ssid(), bssid, client);
}
#endif // TINS_HAVE_WPA2_CALLBACKS
}
catch(WPA2::invalid_handshake&) {
}
}
}
const WPA2Decrypter::keys_map& WPA2Decrypter::get_keys() const {
return keys_;
}
WPA2Decrypter::addr_pair WPA2Decrypter::extract_addr_pair(const Dot11Data& dot11) {
if (dot11.from_ds() && !dot11.to_ds()) {
return make_addr_pair(dot11.addr2(), dot11.addr3());
}
else if (!dot11.from_ds() && dot11.to_ds()) {
return make_addr_pair(dot11.addr1(), dot11.addr2());
}
else {
return make_addr_pair(dot11.addr2(), dot11.addr3());
}
}
WPA2Decrypter::addr_pair WPA2Decrypter::extract_addr_pair_dst(const Dot11Data& dot11) {
if (dot11.from_ds() && !dot11.to_ds()) {
return make_addr_pair(dot11.addr1(), dot11.addr2());
}
else if (!dot11.from_ds() && dot11.to_ds()) {
return make_addr_pair(dot11.addr1(), dot11.addr3());
}
else {
return make_addr_pair(dot11.addr1(), dot11.addr3());
}
}
WPA2Decrypter::bssids_map::const_iterator WPA2Decrypter::find_ap(const Dot11Data& dot11) {
if (dot11.from_ds() && !dot11.to_ds()) {
return aps_.find(dot11.addr2());
}
else if (!dot11.from_ds() && dot11.to_ds()) {
return aps_.find(dot11.addr1());
}
else {
return aps_.find(dot11.addr3());
}
}
bool WPA2Decrypter::decrypt(PDU& pdu) {
if (capturer_.process_packet(pdu)) {
try_add_keys(pdu.rfind_pdu<Dot11Data>(), capturer_.handshakes().front());
capturer_.clear_handshakes();
}
else if (const Dot11Beacon* beacon = pdu.find_pdu<Dot11Beacon>()) {
if (aps_.count(beacon->addr3()) == 0) {
try {
string ssid = beacon->ssid();
if (pmks_.count(ssid)) {
add_access_point(ssid, beacon->addr3());
}
}
catch(option_not_found&) {
}
}
}
else {
Dot11Data* data = pdu.find_pdu<Dot11Data>();
RawPDU* raw = pdu.find_pdu<RawPDU>();
if (data && raw && data->wep()) {
// search for the tuple (bssid, src_addr)
keys_map::const_iterator it = keys_.find(extract_addr_pair(*data));
// search for the tuple (bssid, dst_addr) if the above didn't work
if (it == keys_.end()) {
it = keys_.find(extract_addr_pair_dst(*data));
}
if (it != keys_.end()) {
SNAP* snap = it->second.decrypt_unicast(*data, *raw);
if (snap) {
data->inner_pdu(snap);
data->wep(0);
return true;
}
}
}
}
return false;
}
#ifdef TINS_HAVE_WPA2_CALLBACKS
void WPA2Decrypter::handshake_captured_callback(const handshake_captured_callback_type& callback) {
handshake_captured_callback_ = callback;
}
void WPA2Decrypter::ap_found_callback(const ap_found_callback_type& callback) {
ap_found_callback_ = callback;
}
#endif // TINS_HAVE_WPA2_CALLBACKS
#endif // TINS_HAVE_WPA2_DECRYPTION
} // namespace Crypto
} // namespace Tins
#endif // TINS_HAVE_DOT11