mirror of
https://github.com/mfontanini/libtins
synced 2026-01-23 10:45:57 +01:00
IPv6 data packets with payload or padded bytes received after one with no Next Header were not being parsed correctly, resulting in NULL PDU. This commit fixes the IPv6 parser to be compliant with RFC 2460 Section 4.7 by adding a check in the IPv6 constructor to ignore the subsequent packets if an IPv6 packet contains no Next Header. Signed-off-by: James Raphael Tiovalen <jamestiotio@gmail.com>
444 lines
16 KiB
C++
444 lines
16 KiB
C++
/*
|
|
* Copyright (c) 2017, Matias Fontanini
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following disclaimer
|
|
* in the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <cstring>
|
|
#ifndef _WIN32
|
|
#include <netinet/in.h>
|
|
#include <sys/socket.h>
|
|
#else
|
|
#ifndef WIN32_LEAN_AND_MEAN
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#endif
|
|
#include <ws2tcpip.h>
|
|
#endif
|
|
#include <tins/ipv6.h>
|
|
#include <tins/constants.h>
|
|
#include <tins/packet_sender.h>
|
|
#include <tins/rawpdu.h>
|
|
#include <tins/exceptions.h>
|
|
#include <tins/pdu_allocator.h>
|
|
#include <tins/memory_helpers.h>
|
|
#include <tins/detail/pdu_helpers.h>
|
|
|
|
using std::make_pair;
|
|
using std::vector;
|
|
|
|
using Tins::Memory::InputMemoryStream;
|
|
using Tins::Memory::OutputMemoryStream;
|
|
|
|
namespace Tins {
|
|
|
|
PDU::metadata IPv6::extract_metadata(const uint8_t *buffer, uint32_t total_sz) {
|
|
if (TINS_UNLIKELY(total_sz < sizeof(ipv6_header))) {
|
|
throw malformed_packet();
|
|
}
|
|
InputMemoryStream stream(buffer, total_sz);
|
|
const ipv6_header* header = (const ipv6_header*)buffer;
|
|
uint32_t header_size = sizeof(ipv6_header);
|
|
uint8_t current_header = header->next_header;
|
|
stream.skip(sizeof(ipv6_header));
|
|
while (is_extension_header(current_header)) {
|
|
current_header = stream.read<uint8_t>();
|
|
const uint32_t ext_size = (static_cast<uint32_t>(stream.read<uint8_t>()) + 1) * 8;
|
|
const uint32_t payload_size = ext_size - sizeof(uint8_t) * 2;
|
|
header_size += ext_size;
|
|
stream.skip(payload_size);
|
|
}
|
|
return metadata(header_size, pdu_flag, PDU::UNKNOWN);
|
|
}
|
|
|
|
IPv6::hop_by_hop_header IPv6::hop_by_hop_header::from_extension_header(const ext_header& hdr) {
|
|
if (TINS_UNLIKELY(hdr.option() != HOP_BY_HOP)) {
|
|
throw invalid_ipv6_extension_header();
|
|
}
|
|
hop_by_hop_header header;
|
|
header.options = parse_header_options(hdr.data_ptr(), hdr.data_size());
|
|
return header;
|
|
}
|
|
|
|
IPv6::destination_routing_header IPv6::destination_routing_header::from_extension_header(const ext_header& hdr) {
|
|
if (TINS_UNLIKELY(hdr.option() != DESTINATION_ROUTING_OPTIONS)) {
|
|
throw invalid_ipv6_extension_header();
|
|
}
|
|
destination_routing_header header;
|
|
header.options = parse_header_options(hdr.data_ptr(), hdr.data_size());
|
|
return header;
|
|
}
|
|
|
|
IPv6::routing_header IPv6::routing_header::from_extension_header(const ext_header& hdr) {
|
|
if (TINS_UNLIKELY(hdr.option() != ROUTING)) {
|
|
throw invalid_ipv6_extension_header();
|
|
}
|
|
Memory::InputMemoryStream stream(hdr.data_ptr(), hdr.data_size());
|
|
routing_header header;
|
|
header.routing_type = stream.read<uint8_t>();
|
|
header.segments_left = stream.read<uint8_t>();
|
|
header.data.assign(stream.pointer(), stream.pointer() + stream.size());
|
|
return header;
|
|
}
|
|
|
|
IPv6::fragment_header IPv6::fragment_header::from_extension_header(const ext_header& hdr) {
|
|
if (TINS_UNLIKELY(hdr.option() != FRAGMENT)) {
|
|
throw invalid_ipv6_extension_header();
|
|
}
|
|
Memory::InputMemoryStream stream(hdr.data_ptr(), hdr.data_size());
|
|
fragment_header header;
|
|
uint16_t field = stream.read_be<uint16_t>();
|
|
header.fragment_offset = field >> 3;
|
|
header.more_fragments = field & 1;
|
|
header.identification = stream.read_be<uint32_t>();
|
|
return header;
|
|
}
|
|
|
|
IPv6::IPv6(address_type ip_dst, address_type ip_src, PDU* /*child*/)
|
|
: header_(), next_header_() {
|
|
version(6);
|
|
dst_addr(ip_dst);
|
|
src_addr(ip_src);
|
|
}
|
|
|
|
IPv6::IPv6(const uint8_t* buffer, uint32_t total_sz) {
|
|
InputMemoryStream stream(buffer, total_sz);
|
|
stream.read(header_);
|
|
uint8_t current_header = header_.next_header;
|
|
uint32_t actual_payload_length = payload_length();
|
|
bool is_payload_fragmented = false;
|
|
while (stream) {
|
|
if (is_extension_header(current_header) && current_header != NO_NEXT_HEADER) {
|
|
if (current_header == FRAGMENT) {
|
|
is_payload_fragmented = true;
|
|
}
|
|
const uint8_t ext_type = stream.read<uint8_t>();
|
|
// every ext header is at least 8 bytes long
|
|
// minus one, from the next_header field.
|
|
const uint32_t ext_size = (static_cast<uint32_t>(stream.read<uint8_t>()) + 1) * 8;
|
|
const uint32_t payload_size = ext_size - sizeof(uint8_t) * 2;
|
|
if (!stream.can_read(payload_size)) {
|
|
throw malformed_packet();
|
|
}
|
|
// Add a header using the current header type (e.g. what we saw as the next
|
|
// header type in the previous)
|
|
add_header(ext_header(current_header, payload_size, stream.pointer()));
|
|
if (actual_payload_length == 0u && current_header == HOP_BY_HOP) {
|
|
// could be a jumbogram, look for Jumbo Payload Option
|
|
InputMemoryStream options(stream.pointer(), payload_size);
|
|
while (options) {
|
|
const uint8_t opt_type = options.read<uint8_t>();
|
|
if (opt_type == PAD_1) {
|
|
continue;
|
|
}
|
|
const uint8_t opt_size = options.read<uint8_t>();
|
|
if (opt_type == JUMBO_PAYLOAD) {
|
|
if (opt_size != 4) {
|
|
throw malformed_packet();
|
|
}
|
|
actual_payload_length = stream.read_be<uint32_t>();
|
|
break;
|
|
}
|
|
options.skip(opt_size);
|
|
}
|
|
}
|
|
current_header = ext_type;
|
|
actual_payload_length -= ext_size;
|
|
stream.skip(payload_size);
|
|
}
|
|
else {
|
|
if (!stream.can_read(actual_payload_length)) {
|
|
throw malformed_packet();
|
|
}
|
|
if (is_payload_fragmented) {
|
|
inner_pdu(new Tins::RawPDU(stream.pointer(), actual_payload_length));
|
|
}
|
|
else {
|
|
inner_pdu(
|
|
Internals::pdu_from_flag(
|
|
static_cast<Constants::IP::e>(current_header),
|
|
stream.pointer(),
|
|
actual_payload_length,
|
|
false
|
|
)
|
|
);
|
|
if (!inner_pdu()) {
|
|
inner_pdu(
|
|
Internals::allocate<IPv6>(
|
|
current_header,
|
|
stream.pointer(),
|
|
actual_payload_length
|
|
)
|
|
);
|
|
if (!inner_pdu()) {
|
|
inner_pdu(new Tins::RawPDU(stream.pointer(), actual_payload_length));
|
|
}
|
|
}
|
|
}
|
|
// We got to an actual PDU, we're done
|
|
break;
|
|
}
|
|
}
|
|
next_header_ = current_header;
|
|
}
|
|
|
|
bool IPv6::is_extension_header(uint8_t header_id) {
|
|
return header_id == HOP_BY_HOP || header_id == DESTINATION_ROUTING_OPTIONS
|
|
|| header_id == ROUTING || header_id == FRAGMENT || header_id == AUTHENTICATION
|
|
|| header_id == DESTINATION_OPTIONS || header_id == MOBILITY
|
|
|| header_id == NO_NEXT_HEADER;
|
|
}
|
|
|
|
uint32_t IPv6::get_padding_size(const ext_header& header) {
|
|
const uint32_t padding = (header.data_size() + sizeof(uint8_t) * 2) % 8;
|
|
return padding == 0 ? 0 : (8 - padding);
|
|
}
|
|
|
|
vector<IPv6::header_option_type> IPv6::parse_header_options(const uint8_t* data, size_t size) {
|
|
Memory::InputMemoryStream stream(data, size);
|
|
vector<header_option_type> options;
|
|
|
|
while (stream.size() > 0) {
|
|
try {
|
|
uint8_t option = stream.read<uint8_t>();
|
|
if (option == PAD_1) {
|
|
continue;
|
|
}
|
|
uint8_t size = stream.read<uint8_t>();
|
|
if (size > stream.size()) {
|
|
throw invalid_ipv6_extension_header();
|
|
}
|
|
if (option != PAD_N) {
|
|
options.push_back(make_pair(option, vector<uint8_t>(stream.pointer(),
|
|
stream.pointer() +
|
|
size)));
|
|
}
|
|
stream.skip(size);
|
|
} catch (const malformed_packet&) {
|
|
throw invalid_ipv6_extension_header();
|
|
}
|
|
}
|
|
return options;
|
|
}
|
|
|
|
void IPv6::version(small_uint<4> new_version) {
|
|
header_.version = new_version;
|
|
}
|
|
|
|
void IPv6::traffic_class(uint8_t new_traffic_class) {
|
|
#if TINS_IS_LITTLE_ENDIAN
|
|
header_.traffic_class = (new_traffic_class >> 4) & 0xf;
|
|
header_.flow_label[0] = (header_.flow_label[0] & 0x0f) | ((new_traffic_class << 4) & 0xf0);
|
|
#else
|
|
header_.traffic_class = new_traffic_class;
|
|
#endif
|
|
}
|
|
|
|
void IPv6::flow_label(small_uint<20> new_flow_label) {
|
|
#if TINS_IS_LITTLE_ENDIAN
|
|
uint32_t value = Endian::host_to_be<uint32_t>(new_flow_label);
|
|
header_.flow_label[2] = (value >> 24) & 0xff;
|
|
header_.flow_label[1] = (value >> 16) & 0xff;
|
|
header_.flow_label[0] = ((value >> 8) & 0x0f) | (header_.flow_label[0] & 0xf0);
|
|
#else
|
|
header_.flow_label = new_flow_label;
|
|
#endif
|
|
}
|
|
|
|
void IPv6::payload_length(uint16_t new_payload_length) {
|
|
header_.payload_length = Endian::host_to_be(new_payload_length);
|
|
}
|
|
|
|
void IPv6::next_header(uint8_t new_next_header) {
|
|
next_header_ = header_.next_header = new_next_header;
|
|
}
|
|
|
|
void IPv6::hop_limit(uint8_t new_hop_limit) {
|
|
header_.hop_limit = new_hop_limit;
|
|
}
|
|
|
|
void IPv6::src_addr(const address_type& new_src_addr) {
|
|
new_src_addr.copy(header_.src_addr);
|
|
}
|
|
|
|
void IPv6::dst_addr(const address_type& new_dst_addr) {
|
|
new_dst_addr.copy(header_.dst_addr);
|
|
}
|
|
|
|
uint32_t IPv6::header_size() const {
|
|
return sizeof(header_) + calculate_headers_size();
|
|
}
|
|
|
|
bool IPv6::matches_response(const uint8_t* ptr, uint32_t total_sz) const {
|
|
if (total_sz < sizeof(ipv6_header)) {
|
|
return false;
|
|
}
|
|
const ipv6_header* hdr_ptr = (const ipv6_header*)ptr;
|
|
// checks for ff02 multicast
|
|
if (src_addr() == hdr_ptr->dst_addr &&
|
|
(dst_addr() == hdr_ptr->src_addr || (header_.dst_addr[0] == 0xff && header_.dst_addr[1] == 0x02))) {
|
|
// is this OK? there's no inner pdu, simple dst/src addr match should suffice
|
|
if (!inner_pdu()) {
|
|
return true;
|
|
}
|
|
ptr += sizeof(ipv6_header);
|
|
total_sz -= sizeof(ipv6_header);
|
|
uint8_t current = hdr_ptr->next_header;
|
|
// 8 == minimum header size
|
|
while (total_sz > 8 && is_extension_header(current)) {
|
|
if (static_cast<uint32_t>(ptr[1] + 1) * 8 > total_sz) {
|
|
return false;
|
|
}
|
|
current = ptr[0];
|
|
total_sz -= (ptr[1] + 1) * 8;
|
|
ptr += (ptr[1] + 1) * 8;
|
|
}
|
|
if (!is_extension_header(current)) {
|
|
return inner_pdu()->matches_response(ptr, total_sz);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void IPv6::write_serialization(uint8_t* buffer, uint32_t total_sz) {
|
|
OutputMemoryStream stream(buffer, total_sz);
|
|
vector<uint8_t> header_types;
|
|
// Iterate the headers and store their current values. At the same time, update header X
|
|
// so it has the option type of header X + 1
|
|
for (size_t i = 0; i < ext_headers_.size(); ++i) {
|
|
const uint8_t option = ext_headers_[i].option();
|
|
header_types.push_back(option);
|
|
if (i > 0) {
|
|
ext_headers_[i - 1].option(option);
|
|
}
|
|
}
|
|
// If we have at least one, then update our IPv6 header's next header type
|
|
if (!header_types.empty()) {
|
|
header_.next_header = header_types[0];
|
|
}
|
|
if (inner_pdu()) {
|
|
uint8_t new_flag = Internals::pdu_flag_to_ip_type(inner_pdu()->pdu_type());
|
|
if (new_flag == 0xff && Internals::pdu_type_registered<IPv6>(inner_pdu()->pdu_type())) {
|
|
new_flag = static_cast<Constants::IP::e>(
|
|
Internals::pdu_type_to_id<IPv6>(inner_pdu()->pdu_type())
|
|
);
|
|
}
|
|
// If we managed to find the next flag, then set it. Otherwise, fall back to the
|
|
// original (or user set) next header
|
|
if (new_flag != 0xff) {
|
|
set_last_next_header(new_flag);
|
|
}
|
|
else {
|
|
set_last_next_header(next_header_);
|
|
}
|
|
}
|
|
else {
|
|
set_last_next_header(0);
|
|
}
|
|
payload_length(static_cast<uint16_t>(total_sz - sizeof(header_)));
|
|
stream.write(header_);
|
|
for (headers_type::const_iterator it = ext_headers_.begin(); it != ext_headers_.end(); ++it) {
|
|
write_header(*it, stream);
|
|
}
|
|
// Restore our original header types
|
|
for (size_t i = 0; i < ext_headers_.size(); ++i) {
|
|
ext_headers_[i].option(header_types[i]);
|
|
}
|
|
}
|
|
|
|
#ifndef BSD
|
|
void IPv6::send(PacketSender& sender, const NetworkInterface& interface) {
|
|
sockaddr_in6 link_addr;
|
|
const PacketSender::SocketType type = PacketSender::IPV6_SOCKET;
|
|
link_addr.sin6_family = AF_INET6;
|
|
link_addr.sin6_port = 0;
|
|
// Required to set sin6_scope_id to interface index as stated in RFC2553.
|
|
// https://datatracker.ietf.org/doc/html/rfc2553#section-3.3
|
|
if (IPv6Address(header_.dst_addr).is_local_unicast()) {
|
|
link_addr.sin6_scope_id = interface.id();
|
|
}
|
|
memcpy((uint8_t*)&link_addr.sin6_addr, header_.dst_addr, address_type::address_size);
|
|
sender.send_l3(*this, (struct sockaddr*)&link_addr, sizeof(link_addr), type);
|
|
}
|
|
|
|
PDU* IPv6::recv_response(PacketSender& sender, const NetworkInterface &) {
|
|
PacketSender::SocketType type = PacketSender::IPV6_SOCKET;
|
|
if (inner_pdu() && inner_pdu()->pdu_type() == PDU::ICMPv6) {
|
|
type = PacketSender::ICMPV6_SOCKET;
|
|
}
|
|
return sender.recv_l3(*this, 0, sizeof(sockaddr_in6), type);
|
|
}
|
|
#endif
|
|
|
|
void IPv6::add_ext_header(const ext_header& header) {
|
|
add_header(header);
|
|
}
|
|
|
|
void IPv6::add_header(const ext_header& header) {
|
|
ext_headers_.push_back(header);
|
|
}
|
|
|
|
const IPv6::ext_header* IPv6::search_header(ExtensionHeader id) const {
|
|
headers_type::const_iterator it = ext_headers_.begin();
|
|
while (it != ext_headers_.end()) {
|
|
if (it->option() == id) {
|
|
return &*it;
|
|
}
|
|
++it;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void IPv6::set_last_next_header(uint8_t value) {
|
|
if (ext_headers_.empty()) {
|
|
header_.next_header = value;
|
|
}
|
|
else {
|
|
ext_headers_.back().option(value);
|
|
}
|
|
}
|
|
|
|
uint32_t IPv6::calculate_headers_size() const {
|
|
typedef headers_type::const_iterator const_iterator;
|
|
uint32_t output = 0;
|
|
for (const_iterator iter = ext_headers_.begin(); iter != ext_headers_.end(); ++iter) {
|
|
output += static_cast<uint32_t>(iter->data_size() + sizeof(uint8_t) * 2);
|
|
output += get_padding_size(*iter);
|
|
|
|
}
|
|
return output;
|
|
}
|
|
|
|
void IPv6::write_header(const ext_header& header, OutputMemoryStream& stream) {
|
|
const uint8_t length = header.length_field() / 8;
|
|
stream.write(header.option());
|
|
stream.write(length);
|
|
stream.write(header.data_ptr(), header.data_size());
|
|
// Append padding
|
|
stream.fill(get_padding_size(header), 0);
|
|
}
|
|
|
|
} // Tins
|