1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-23 02:35:57 +01:00
Files
libtins/src/utils.cpp
2017-06-05 20:44:03 -07:00

632 lines
20 KiB
C++

/*
* Copyright (c) 2017, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdexcept>
#include <sstream>
#include <memory>
#include <cstring>
#include <fstream>
#include "macros.h"
#ifndef _WIN32
#if defined(BSD) || defined(__FreeBSD_kernel__)
#include <sys/socket.h>
#include <sys/file.h>
#include <sys/sysctl.h>
#include <net/route.h>
#include <net/if_dl.h>
#include <net/if.h>
#include <netinet/in.h>
#else
#include <netpacket/packet.h>
#endif
#include <ifaddrs.h>
#include <netdb.h>
#include <net/if.h>
#ifdef __ANDROID_API__
#include <linux/in.h>
#include <linux/in6.h>
#endif
#else
#include <winsock2.h>
#include <ws2tcpip.h>
#include <iphlpapi.h>
#undef interface
#endif
#include "utils.h"
#include "pdu.h"
#include "arp.h"
#include "ethernetII.h"
#include "endianness.h"
#include "network_interface.h"
#include "packet_sender.h"
#include "cxxstd.h"
#include "hw_address.h"
#include "memory_helpers.h"
#include "internals.h"
#include "detail/smart_ptr.h"
using std::string;
using std::set;
using std::ifstream;
using std::vector;
using std::back_inserter;
using std::runtime_error;
using Tins::Memory::InputMemoryStream;
using Tins::Memory::OutputMemoryStream;
/** \cond */
struct InterfaceCollector {
set<string> ifaces;
#ifdef _WIN32
bool operator() (PIP_ADAPTER_ADDRESSES addr) {
ifaces.insert(addr->AdapterName);
return false;
}
#else
bool operator() (struct ifaddrs* addr) {
ifaces.insert(addr->ifa_name);
return false;
}
#endif
};
addrinfo* resolve_domain(const string& to_resolve, int family) {
addrinfo* result, hints = addrinfo();
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_family = family;
if (!getaddrinfo(to_resolve.c_str(), 0, &hints, &result)) {
return result;
}
else {
throw runtime_error("Could not resolve address");
}
}
#if defined(BSD) || defined(__FreeBSD_kernel__)
vector<char> query_route_table(int family) {
int mib[6];
vector<char> buf;
size_t len;
mib[0] = CTL_NET;
mib[1] = AF_ROUTE;
mib[2] = 0;
mib[3] = family;
mib[4] = NET_RT_DUMP;
mib[5] = 0;
if (sysctl(mib, 6, NULL, &len, NULL, 0) < 0) {
throw runtime_error("sysctl failed");
}
buf.resize(len);
if (sysctl(mib, 6, &buf[0], &len, NULL, 0) < 0) {
throw runtime_error("sysctl failed");
}
return buf;
}
void parse_header(struct rt_msghdr* rtm, vector<sockaddr*>& addrs) {
char* ptr = (char *)(rtm + 1);
// Iterate from RTA_DST (0) to RTA_NETMASK (2)
for (int i = 0; i < 3; ++i) {
sockaddr* sa = 0;
if ((rtm->rtm_addrs & (1 << i)) != 0) {
sa = (struct sockaddr *)ptr;
ptr += sa->sa_len;
if (sa->sa_family == 0) {
sa = 0;
}
}
addrs[i] = sa;
}
}
#endif
namespace Tins {
/** \endcond */
namespace Utils {
IPv4Address resolve_domain(const string& to_resolve) {
addrinfo* result = ::resolve_domain(to_resolve, AF_INET);
IPv4Address addr(((sockaddr_in*)result->ai_addr)->sin_addr.s_addr);
freeaddrinfo(result);
return addr;
}
IPv6Address resolve_domain6(const string& to_resolve) {
addrinfo* result = ::resolve_domain(to_resolve, AF_INET6);
IPv6Address addr((const uint8_t*)&((sockaddr_in6*)result->ai_addr)->sin6_addr);
freeaddrinfo(result);
return addr;
}
HWAddress<6> resolve_hwaddr(const NetworkInterface& iface,
IPv4Address ip,
PacketSender& sender) {
NetworkInterface::Info info(iface.addresses());
#ifdef _WIN32
// On Windows, use SendARP
IPAddr source;
IPAddr dest;
ULONG hw_address[2];
ULONG address_length = 6;
source = static_cast<uint32_t>(info.ip_addr);
dest = static_cast<uint32_t>(ip);
if (SendARP(dest, source, &hw_address, &address_length) == NO_ERROR && address_length == 6) {
return HWAddress<6>((const uint8_t*)hw_address);
}
#else
// On other platforms, just do the ARP resolution ourselves
EthernetII packet = ARP::make_arp_request(ip, info.ip_addr, info.hw_addr);
Internals::smart_ptr<PDU>::type response(sender.send_recv(packet, iface));
if (response.get()) {
const ARP* arp_resp = response->find_pdu<ARP>();
if (arp_resp) {
return arp_resp->sender_hw_addr();
}
}
#endif
throw runtime_error("Could not resolve hardware address");
}
HWAddress<6> resolve_hwaddr(IPv4Address ip, PacketSender& sender) {
return resolve_hwaddr(sender.default_interface(), ip, sender);
}
#if defined(BSD) || defined(__FreeBSD_kernel__)
vector<RouteEntry> route_entries() {
vector<RouteEntry> output;
vector<char> buffer = query_route_table(AF_INET);
char* next = &buffer[0], *end = &buffer[buffer.size()];
rt_msghdr* rtm;
vector<sockaddr*> sa(32);
char iface_name[IF_NAMESIZE];
while (next < end) {
rtm = (rt_msghdr*)next;
// Filter:
// * RTF_STATIC (only manually added routes)
if ((rtm->rtm_flags & (RTF_STATIC)) != 0) {
parse_header(rtm, sa);
if (sa[RTAX_DST] && sa[RTAX_GATEWAY] && if_indextoname(rtm->rtm_index, iface_name)) {
RouteEntry entry;
entry.destination = IPv4Address(((struct sockaddr_in *)sa[RTAX_DST])->sin_addr.s_addr);
entry.gateway = IPv4Address(((struct sockaddr_in *)sa[RTAX_GATEWAY])->sin_addr.s_addr);
if (sa[RTAX_NETMASK]) {
entry.mask = IPv4Address(((struct sockaddr_in *)sa[RTAX_NETMASK])->sin_addr.s_addr);
}
entry.interface = iface_name;
entry.metric = 0;
output.push_back(entry);
}
}
next += rtm->rtm_msglen;
}
return output;
}
vector<Route6Entry> route6_entries() {
vector<Route6Entry> output;
vector<char> buffer = query_route_table(AF_INET6);
char* next = &buffer[0], *end = &buffer[buffer.size()];
rt_msghdr* rtm;
vector<sockaddr*> sa(9);
char iface_name[IF_NAMESIZE];
while (next < end) {
rtm = (rt_msghdr*)next;
// Filter protocol-cloned entries
bool process_entry = true;
// These were removed in recent versions of FreeBSD
#if defined(RTF_WASCLONED) && defined(RTF_PRCLONING)
process_entry = (rtm->rtm_flags & RTF_WASCLONED) == 0 ||
(rtm->rtm_flags & RTF_PRCLONING) == 0;
#endif
if (process_entry) {
parse_header(rtm, sa);
if (sa[RTAX_DST] && sa[RTAX_GATEWAY] && if_indextoname(rtm->rtm_index, iface_name)) {
Route6Entry entry;
entry.destination = IPv6Address(((struct sockaddr_in6 *)sa[RTAX_DST])->sin6_addr.s6_addr);
entry.gateway = IPv6Address(((struct sockaddr_in6 *)sa[RTAX_GATEWAY])->sin6_addr.s6_addr);
int prefix_length = 0;
if (sa[RTAX_NETMASK]) {
struct sockaddr_in6 *sin = (struct sockaddr_in6 *)sa[RTAX_NETMASK];
for (size_t i = 0; i < 16; ++i) {
uint8_t this_byte = sin->sin6_addr.s6_addr[i];
// Stop when we find a zero byte
if (this_byte == 0) {
break;
}
switch (this_byte) {
case 0xff:
prefix_length += 8;
break;
case 0xfe:
prefix_length += 7;
break;
case 0xfc:
prefix_length += 6;
break;
case 0xf8:
prefix_length += 5;
break;
case 0xf0:
prefix_length += 4;
break;
case 0xe0:
prefix_length += 3;
break;
case 0xc0:
prefix_length += 2;
break;
case 0x80:
prefix_length += 1;
break;
default:
break;
}
}
}
entry.mask = IPv6Address::from_prefix_length(prefix_length);
entry.interface = iface_name;
entry.metric = 0;
output.push_back(entry);
}
}
next += rtm->rtm_msglen;
}
return output;
}
#elif defined(_WIN32)
vector<RouteEntry> route_entries() {
vector<RouteEntry> output;
MIB_IPFORWARDTABLE* table;
ULONG size = 0;
GetIpForwardTable(0, &size, 0);
vector<uint8_t> buffer(size);
table = (MIB_IPFORWARDTABLE*)&buffer[0];
GetIpForwardTable(table, &size, 0);
for (DWORD i = 0; i < table->dwNumEntries; i++) {
MIB_IPFORWARDROW* row = &table->table[i];
if (row->dwForwardType == MIB_IPROUTE_TYPE_INDIRECT ||
row->dwForwardType == MIB_IPROUTE_TYPE_DIRECT) {
RouteEntry entry;
entry.interface = NetworkInterface::from_index(row->dwForwardIfIndex).name();
entry.destination = IPv4Address(row->dwForwardDest);
entry.mask = IPv4Address(row->dwForwardMask);
entry.gateway = IPv4Address(row->dwForwardNextHop);
entry.metric = row->dwForwardMetric1;
output.push_back(entry);
}
}
return output;
}
vector<Route6Entry> route6_entries() {
vector<Route6Entry> output;
MIB_IPFORWARD_TABLE2* table;
GetIpForwardTable2(AF_INET6, &table);
for (ULONG i = 0; i < table->NumEntries; i++) {
MIB_IPFORWARD_ROW2* row = &table->Table[i];
if (true) {
try {
Route6Entry entry;
entry.interface = NetworkInterface::from_index(row->InterfaceIndex).name();
entry.destination = IPv6Address(row->DestinationPrefix.Prefix.Ipv6.sin6_addr.s6_addr);
entry.mask = IPv6Address::from_prefix_length(row->DestinationPrefix.PrefixLength);
entry.gateway = IPv6Address(row->NextHop.Ipv6.sin6_addr.s6_addr);
entry.metric = row->Metric;
output.push_back(entry);
}
catch (invalid_interface&) {
}
}
}
FreeMibTable(table);
return output;
}
#else // GNU/LINUX
vector<RouteEntry> route_entries() {
using namespace Tins::Internals;
vector<RouteEntry> output;
ifstream input("/proc/net/route");
string destination, mask, metric, gw;
uint32_t dummy;
skip_line(input);
RouteEntry entry;
while (input >> entry.interface >> destination >> gw) {
for (unsigned i(0); i < 4; ++i) {
input >> metric;
}
input >> mask;
from_hex(destination, dummy);
entry.destination = IPv4Address(dummy);
from_hex(mask, dummy);
entry.mask = IPv4Address(dummy);
from_hex(gw, dummy);
entry.gateway = IPv4Address(dummy);
from_hex(metric, dummy);
entry.metric = dummy;
skip_line(input);
output.push_back(entry);
}
return output;
}
vector<Route6Entry> route6_entries() {
using namespace Tins::Internals;
vector<Route6Entry> output;
ifstream input("/proc/net/ipv6_route");
string destination, mask_length, metric, next_hop, dummy, flags;
Route6Entry entry;
while (input >> destination >> mask_length) {
string temporary;
uint32_t temporary_int;
for (unsigned i(0); i < 2; ++i) {
input >> dummy;
}
input >> next_hop;
input >> metric;
for (unsigned i(0); i < 2; ++i) {
input >> dummy;
}
input >> flags >> entry.interface;
from_hex(destination, temporary);
entry.destination = IPv6Address((const uint8_t*)&temporary[0]);
from_hex(mask_length, temporary_int);
entry.mask = IPv6Address::from_prefix_length(temporary_int);
from_hex(next_hop, temporary);
entry.gateway = IPv6Address((const uint8_t*)&temporary[0]);
from_hex(metric, temporary_int);
entry.metric = temporary_int;
// Process flags
from_hex(flags, temporary_int);
// Skip:
// * 0x01000000 -> cache entries
if ((temporary_int & 0x01000000) == 0) {
output.push_back(entry);
}
}
return output;
}
#endif
bool gateway_from_ip(IPv4Address ip, IPv4Address& gw_addr) {
typedef vector<RouteEntry> entries_type;
entries_type entries;
uint32_t ip_int = ip;
route_entries(back_inserter(entries));
for (entries_type::const_iterator it(entries.begin()); it != entries.end(); ++it) {
if ((ip_int & it->mask) == it->destination) {
gw_addr = it->gateway;
return true;
}
}
return false;
}
#ifdef _WIN32
set<string> network_interfaces() {
set<string> output;
ULONG size;
::GetAdaptersAddresses(AF_INET, 0, 0, 0, &size);
std::vector<uint8_t> buffer(size);
if (::GetAdaptersAddresses(AF_INET, 0, 0, (IP_ADAPTER_ADDRESSES *)&buffer[0], &size) == ERROR_SUCCESS) {
PIP_ADAPTER_ADDRESSES iface = (IP_ADAPTER_ADDRESSES *)&buffer[0];
while (iface) {
output.insert(iface->AdapterName);
iface = iface->Next;
}
}
return output;
}
#else
set<string> network_interfaces() {
set<string> output;
struct ifaddrs* ifaddrs = 0;
struct ifaddrs* if_it = 0;
getifaddrs(&ifaddrs);
for (if_it = ifaddrs; if_it; if_it = if_it->ifa_next) {
output.insert(if_it->ifa_name);
}
if (ifaddrs) {
freeifaddrs(ifaddrs);
}
return output;
}
#endif // _WIN32
uint16_t channel_to_mhz(uint16_t channel) {
return 2407 + (channel * 5);
}
uint16_t mhz_to_channel(uint16_t mhz) {
return (mhz - 2407) / 5;
}
string to_string(PDU::PDUType pduType) {
#define ENUM_TEXT(p) case(PDU::p): return #p;
switch (pduType){
ENUM_TEXT(RAW);
ENUM_TEXT(ETHERNET_II);
ENUM_TEXT(IEEE802_3);
ENUM_TEXT(RADIOTAP);
ENUM_TEXT(DOT11);
ENUM_TEXT(DOT11_ACK);
ENUM_TEXT(DOT11_ASSOC_REQ);
ENUM_TEXT(DOT11_ASSOC_RESP);
ENUM_TEXT(DOT11_AUTH);
ENUM_TEXT(DOT11_BEACON);
ENUM_TEXT(DOT11_BLOCK_ACK);
ENUM_TEXT(DOT11_BLOCK_ACK_REQ);
ENUM_TEXT(DOT11_CF_END);
ENUM_TEXT(DOT11_DATA);
ENUM_TEXT(DOT11_CONTROL);
ENUM_TEXT(DOT11_DEAUTH);
ENUM_TEXT(DOT11_DIASSOC);
ENUM_TEXT(DOT11_END_CF_ACK);
ENUM_TEXT(DOT11_MANAGEMENT);
ENUM_TEXT(DOT11_PROBE_REQ);
ENUM_TEXT(DOT11_PROBE_RESP);
ENUM_TEXT(DOT11_PS_POLL);
ENUM_TEXT(DOT11_REASSOC_REQ);
ENUM_TEXT(DOT11_REASSOC_RESP);
ENUM_TEXT(DOT11_RTS);
ENUM_TEXT(DOT11_QOS_DATA);
ENUM_TEXT(LLC);
ENUM_TEXT(SNAP);
ENUM_TEXT(IP);
ENUM_TEXT(ARP);
ENUM_TEXT(TCP);
ENUM_TEXT(UDP);
ENUM_TEXT(ICMP);
ENUM_TEXT(BOOTP);
ENUM_TEXT(DHCP);
ENUM_TEXT(EAPOL);
ENUM_TEXT(RC4EAPOL);
ENUM_TEXT(RSNEAPOL);
ENUM_TEXT(DNS);
ENUM_TEXT(LOOPBACK);
ENUM_TEXT(IPv6);
ENUM_TEXT(ICMPv6);
ENUM_TEXT(SLL);
ENUM_TEXT(DHCPv6);
ENUM_TEXT(DOT1Q);
ENUM_TEXT(PPPOE);
ENUM_TEXT(STP);
ENUM_TEXT(PPI);
ENUM_TEXT(IPSEC_AH);
ENUM_TEXT(IPSEC_ESP);
ENUM_TEXT(PKTAP);
ENUM_TEXT(MPLS);
ENUM_TEXT(USER_DEFINED_PDU);
default:
return "";
}
#undef ENUM_TEXT
}
uint32_t do_checksum(const uint8_t* start, const uint8_t* end) {
return Endian::host_to_be<uint32_t>(sum_range(start, end));
}
uint16_t sum_range(const uint8_t* start, const uint8_t* end) {
uint32_t checksum(0);
const uint8_t* last = end;
uint16_t buffer = 0;
uint16_t padding = 0;
const uint8_t* ptr = start;
if (((end - start) & 1) == 1) {
last = end - 1;
padding = Endian::host_to_le<uint16_t>(*(end - 1));
}
while (ptr < last) {
memcpy(&buffer, ptr, sizeof(uint16_t));
checksum += buffer;
ptr += sizeof(uint16_t);
}
checksum += padding;
while (checksum >> 16) {
checksum = (checksum & 0xffff) + (checksum >> 16);
}
return checksum;
}
template <size_t buffer_size, typename AddressType>
uint32_t generic_pseudoheader_checksum(const AddressType& source_ip,
const AddressType& dest_ip,
uint16_t len,
uint16_t flag) {
uint8_t buffer[buffer_size];
OutputMemoryStream stream(buffer, sizeof(buffer));
stream.write(source_ip);
stream.write(dest_ip);
stream.write(Endian::host_to_be(flag));
stream.write(Endian::host_to_be(len));
InputMemoryStream input_stream(buffer, sizeof(buffer));
uint32_t checksum = 0;
while (input_stream) {
checksum += input_stream.read<uint16_t>();
}
return checksum;
}
uint32_t pseudoheader_checksum(IPv4Address source_ip,
IPv4Address dest_ip,
uint16_t len,
uint16_t flag) {
return generic_pseudoheader_checksum<sizeof(uint32_t) * 3>(
source_ip, dest_ip, len, flag
);
}
uint32_t pseudoheader_checksum(IPv6Address source_ip,
IPv6Address dest_ip,
uint16_t len,
uint16_t flag) {
return generic_pseudoheader_checksum<IPv6Address::address_size * 2 + sizeof(uint16_t) * 2>(
source_ip, dest_ip, len, flag
);
}
uint32_t crc32(const uint8_t* data, uint32_t data_size) {
uint32_t i, crc = 0;
static uint32_t crc_table[] = {
0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0,
0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320,
0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190,
0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000
};
for (i = 0; i < data_size; ++i) {
crc = (crc >> 4) ^ crc_table[(crc ^ data[i]) & 0x0F];
crc = (crc >> 4) ^ crc_table[(crc ^ (data[i] >> 4)) & 0x0F];
}
return crc;
}
} // Utils
} // Tins