/* * Copyright (c) 2014, Matias Fontanini * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include "utils.h" #ifndef WIN32 #if defined(BSD) || defined(__FreeBSD_kernel__) #include #include #include #else #include #endif #include #include #else #include #endif #include "pdu.h" #include "arp.h" #include "ethernetII.h" #include "endianness.h" #include "network_interface.h" #include "packet_sender.h" #include "cxxstd.h" using namespace std; /** \cond */ struct InterfaceCollector { set ifaces; #ifdef WIN32 bool operator() (PIP_ADAPTER_ADDRESSES addr) { ifaces.insert(addr->AdapterName); return false; } #else bool operator() (struct ifaddrs *addr) { ifaces.insert(addr->ifa_name); return false; } #endif }; addrinfo *resolve_domain(const std::string &to_resolve, int family) { addrinfo *result, hints = addrinfo(); hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = IPPROTO_TCP; hints.ai_family = family; if(!getaddrinfo(to_resolve.c_str(), 0, &hints, &result)) return result; else { throw std::runtime_error("Could not resolve address"); } } namespace Tins { /** \endcond */ namespace Utils { IPv4Address resolve_domain(const std::string &to_resolve) { addrinfo *result = ::resolve_domain(to_resolve, AF_INET); IPv4Address addr(((sockaddr_in*)result->ai_addr)->sin_addr.s_addr); freeaddrinfo(result); return addr; } IPv6Address resolve_domain6(const std::string &to_resolve) { addrinfo *result = ::resolve_domain(to_resolve, AF_INET6); IPv6Address addr((const uint8_t*)&((sockaddr_in6*)result->ai_addr)->sin6_addr); freeaddrinfo(result); return addr; } HWAddress<6> resolve_hwaddr(const NetworkInterface &iface, IPv4Address ip, PacketSender &sender) { IPv4Address my_ip; NetworkInterface::Info info(iface.addresses()); EthernetII packet = ARP::make_arp_request(ip, info.ip_addr, info.hw_addr); Internals::smart_ptr::type response(sender.send_recv(packet, iface)); if(response.get()) { const ARP *arp_resp = response->find_pdu(); if(arp_resp) return arp_resp->sender_hw_addr(); } throw std::runtime_error("Could not resolve hardware address"); } HWAddress<6> resolve_hwaddr(IPv4Address ip, PacketSender &sender) { return resolve_hwaddr(sender.default_interface(), ip, sender); } std::vector route_entries() { std::vector entries; route_entries(std::back_inserter(entries)); return entries; } bool gateway_from_ip(IPv4Address ip, IPv4Address &gw_addr) { typedef std::vector entries_type; entries_type entries; uint32_t ip_int = ip; route_entries(std::back_inserter(entries)); for(entries_type::const_iterator it(entries.begin()); it != entries.end(); ++it) { if((ip_int & it->mask) == it->destination) { gw_addr = it->gateway; return true; } } return false; } set network_interfaces() { InterfaceCollector collector; generic_iface_loop(collector); return collector.ifaces; } uint16_t channel_to_mhz(uint16_t channel) { return 2407 + (channel * 5); } uint16_t mhz_to_channel(uint16_t mhz) { return (mhz - 2407) / 5; } std::string to_string(PDU::PDUType pduType) { #define ENUM_TEXT(p) case(PDU::p): return #p; switch(pduType){ ENUM_TEXT(RAW); ENUM_TEXT(ETHERNET_II); ENUM_TEXT(IEEE802_3); ENUM_TEXT(RADIOTAP); ENUM_TEXT(DOT11); ENUM_TEXT(DOT11_ACK); ENUM_TEXT(DOT11_ASSOC_REQ); ENUM_TEXT(DOT11_ASSOC_RESP); ENUM_TEXT(DOT11_AUTH); ENUM_TEXT(DOT11_BEACON); ENUM_TEXT(DOT11_BLOCK_ACK); ENUM_TEXT(DOT11_BLOCK_ACK_REQ); ENUM_TEXT(DOT11_CF_END); ENUM_TEXT(DOT11_DATA); ENUM_TEXT(DOT11_CONTROL); ENUM_TEXT(DOT11_DEAUTH); ENUM_TEXT(DOT11_DIASSOC); ENUM_TEXT(DOT11_END_CF_ACK); ENUM_TEXT(DOT11_MANAGEMENT); ENUM_TEXT(DOT11_PROBE_REQ); ENUM_TEXT(DOT11_PROBE_RESP); ENUM_TEXT(DOT11_PS_POLL); ENUM_TEXT(DOT11_REASSOC_REQ); ENUM_TEXT(DOT11_REASSOC_RESP); ENUM_TEXT(DOT11_RTS); ENUM_TEXT(DOT11_QOS_DATA); ENUM_TEXT(LLC); ENUM_TEXT(SNAP); ENUM_TEXT(IP); ENUM_TEXT(ARP); ENUM_TEXT(TCP); ENUM_TEXT(UDP); ENUM_TEXT(ICMP); ENUM_TEXT(BOOTP); ENUM_TEXT(DHCP); ENUM_TEXT(EAPOL); ENUM_TEXT(RC4EAPOL); ENUM_TEXT(RSNEAPOL); ENUM_TEXT(DNS); ENUM_TEXT(LOOPBACK); ENUM_TEXT(IPv6); ENUM_TEXT(ICMPv6); ENUM_TEXT(SLL); ENUM_TEXT(DHCPv6); ENUM_TEXT(DOT1Q); ENUM_TEXT(PPPOE); ENUM_TEXT(STP); ENUM_TEXT(PPI); ENUM_TEXT(IPSEC_AH); ENUM_TEXT(IPSEC_ESP); ENUM_TEXT(USER_DEFINED_PDU); default: return ""; } #undef ENUM_TEXT } uint32_t do_checksum(const uint8_t *start, const uint8_t *end) { uint32_t checksum(0); const uint8_t *last = end; uint16_t buffer = 0; uint16_t padding = 0; const uint8_t *ptr = start; if(((end - start) & 1) == 1) { last = end - 1; padding = *(end - 1) << 8; } while(ptr < last) { memcpy(&buffer, ptr, sizeof(uint16_t)); checksum += Endian::host_to_be(buffer); ptr += sizeof(uint16_t); } return checksum + padding; } uint32_t pseudoheader_checksum(IPv4Address source_ip, IPv4Address dest_ip, uint32_t len, uint32_t flag) { uint32_t checksum(0); uint32_t source_ip_int = Endian::host_to_be(source_ip), dest_ip_int = Endian::host_to_be(dest_ip); char buffer[sizeof(uint32_t) * 2]; uint16_t *ptr = (uint16_t*)buffer, *end = (uint16_t*)(buffer + sizeof(buffer)); std::memcpy(buffer, &source_ip_int, sizeof(source_ip_int)); std::memcpy(buffer + sizeof(uint32_t), &dest_ip_int, sizeof(dest_ip_int)); while(ptr < end) checksum += (uint32_t)*ptr++; checksum += flag + len; return checksum; } uint32_t pseudoheader_checksum(IPv6Address source_ip, IPv6Address dest_ip, uint32_t len, uint32_t flag) { uint32_t checksum(0); uint16_t *ptr = (uint16_t*) source_ip.begin(); uint16_t *end = (uint16_t*) source_ip.end(); while(ptr < end) checksum += (uint32_t) Endian::be_to_host(*ptr++); ptr = (uint16_t*) dest_ip.begin(); end = (uint16_t*) dest_ip.end(); while(ptr < end) checksum += (uint32_t) Endian::be_to_host(*ptr++); checksum += flag + len; return checksum; } uint32_t crc32(const uint8_t* data, uint32_t data_size) { uint32_t i, crc = 0; static uint32_t crc_table[] = { 0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000 }; for (i = 0; i < data_size; ++i) { crc = (crc >> 4) ^ crc_table[(crc ^ data[i]) & 0x0F]; crc = (crc >> 4) ^ crc_table[(crc ^ (data[i] >> 4)) & 0x0F]; } return crc; } } }