/* * Copyright (c) 2014, Matias Fontanini * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifndef TINS_INTERNALS_H #define TINS_INTERNALS_H #if TINS_IS_CXX11 #include #endif #include #include #include #include "constants.h" #include "pdu.h" #include "hw_address.h" /** * \cond */ namespace Tins { class IPv4Address; class IPv6Address; namespace Internals { template class byte_array { public: typedef uint8_t* iterator; typedef const uint8_t* const_iterator; byte_array() { std::fill(begin(), end(), 0); } template byte_array(InputIterator start, InputIterator last) { std::copy(start, last, data); } template byte_array(InputIterator start) { std::copy(start, n, data); } uint8_t &operator[](size_t i) { return data[i]; } uint8_t operator[](size_t i) const{ return data[i]; } iterator begin() { return data; } iterator end() { return data + n; } const_iterator begin() const { return data; } const_iterator end() const { return data + n; } size_t size() const { return n; } private: uint8_t data[n]; }; void skip_line(std::istream &input); bool from_hex(const std::string &str, uint32_t &result); template struct enable_if { typedef T type; }; template struct enable_if { }; PDU *pdu_from_flag(Constants::Ethernet::e flag, const uint8_t *buffer, uint32_t size, bool rawpdu_on_no_match = true); PDU *pdu_from_flag(Constants::IP::e flag, const uint8_t *buffer, uint32_t size, bool rawpdu_on_no_match = true); PDU *pdu_from_dlt_flag(int flag, const uint8_t *buffer, uint32_t size, bool rawpdu_on_no_match = true); PDU *pdu_from_flag(PDU::PDUType type, const uint8_t *buffer, uint32_t size); Constants::Ethernet::e pdu_flag_to_ether_type(PDU::PDUType flag); Constants::IP::e pdu_flag_to_ip_type(PDU::PDUType flag); template bool increment_buffer(T &addr) { typename T::iterator it = addr.end() - 1; while(it >= addr.begin() && *it == 0xff) { *it = 0; --it; } // reached end if(it < addr.begin()) return true; (*it)++; return false; } template bool decrement_buffer(T &addr) { typename T::iterator it = addr.end() - 1; while(it >= addr.begin() && *it == 0) { *it = 0xff; --it; } // reached end if(it < addr.begin()) return true; (*it)--; return false; } bool increment(IPv4Address &addr); bool increment(IPv6Address &addr); bool decrement(IPv4Address &addr); bool decrement(IPv6Address &addr); template bool increment(HWAddress &addr) { return increment_buffer(addr); } template bool decrement(HWAddress &addr) { return decrement_buffer(addr); } IPv4Address last_address_from_mask(IPv4Address addr, IPv4Address mask); IPv6Address last_address_from_mask(IPv6Address addr, const IPv6Address &mask); template HWAddress last_address_from_mask(HWAddress addr, const HWAddress &mask) { typename HWAddress::iterator addr_iter = addr.begin(); for(typename HWAddress::const_iterator it = mask.begin(); it != mask.end(); ++it, ++addr_iter) { *addr_iter = *addr_iter | ~*it; } return addr; } inline bool is_dot3(const uint8_t *ptr, size_t sz) { return (sz >= 13 && ptr[12] < 8); } template struct is_unsigned_integral { static const bool value = false; }; template<> struct is_unsigned_integral { static const bool value = true; }; template<> struct is_unsigned_integral { static const bool value = true; }; template<> struct is_unsigned_integral { static const bool value = true; }; template<> struct is_unsigned_integral { static const bool value = true; }; #if TINS_IS_CXX11 // Part of C++14 standard library template using enable_if_t = typename std::enable_if::type; // Template metaprogramming trait to determine if a functor can accept another parameter as an argument template struct accepts_type : std::false_type { }; template struct accepts_type()(std::declval

()) ), bool>::value >> : std::true_type { }; // use enable_if to invoke the Packet&& version of the sniff_loop handler if possible - otherwise fail to old behavior template bool invoke_loop_cb(Functor& f, Packet& p, typename std::enable_if::value, bool>::type* = 0) { return f(std::move(p)); } template bool invoke_loop_cb(Functor& f, Packet& p, typename std::enable_if::value && accepts_type::value, bool>::type* = 0) { return f(p); } template bool invoke_loop_cb(Functor& f, Packet& p, typename std::enable_if::value && !accepts_type::value, bool>::type* = 0) { return f(*p.pdu()); } #endif } // namespace Internals } // namespace Tins /** * \endcond */ #endif