1
0
mirror of https://github.com/mfontanini/libtins synced 2026-01-30 05:24:26 +01:00

Add initial code for new TCP reassembly mechanism

This commit is contained in:
Matias Fontanini
2016-02-07 11:29:24 -08:00
parent 785ee7b47b
commit 76b0c919b9
5 changed files with 1062 additions and 0 deletions

View File

@@ -53,6 +53,7 @@ ADD_LIBRARY(
snap.cpp
sniffer.cpp
tcp.cpp
tcp_ip.cpp
tcp_stream.cpp
udp.cpp
utils.cpp

529
src/tcp_ip.cpp Normal file
View File

@@ -0,0 +1,529 @@
/*
* Copyright (c) 2016, Matias Fontanini
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <limits>
#include <algorithm>
#include "tcp_ip.h"
#include "memory.h"
#include "ip_address.h"
#include "ipv6_address.h"
#include "tcp.h"
#include "ip.h"
#include "ipv6.h"
#include "rawpdu.h"
#include "exceptions.h"
#include "memory_helpers.h"
using std::make_pair;
using std::runtime_error;
using std::numeric_limits;
using std::max;
using std::swap;
using Tins::Memory::OutputMemoryStream;
using Tins::Memory::InputMemoryStream;
namespace Tins {
namespace TCPIP {
// As defined by RFC 1982 - 2 ^ (SERIAL_BITS - 1)
static const uint32_t seq_number_diff = 2147483648U;
// Compares sequence numbers as defined by RFC 1982.
int seq_compare(uint32_t seq1, uint32_t seq2) {
if (seq1 == seq2) {
return 0;
}
if (seq1 < seq2) {
return (seq2 - seq1 < seq_number_diff) ? -1 : 1;
}
else {
return (seq1 - seq2 > seq_number_diff) ? -1 : 1;
}
}
// TCPFlow
TCPFlow::TCPFlow(const IPv4Address& dest_address, uint16_t dest_port,
uint32_t sequence_number)
: seq_number_(sequence_number), dest_port_(dest_port), is_v6_(false),
state_(UNKNOWN) {
OutputMemoryStream output(dest_address_.data(), dest_address_.size());
output.write(dest_address);
}
TCPFlow::TCPFlow(const IPv6Address& dest_address, uint16_t dest_port,
uint32_t sequence_number)
: seq_number_(sequence_number), dest_port_(dest_port), is_v6_(true),
state_(UNKNOWN) {
OutputMemoryStream output(dest_address_.data(), dest_address_.size());
output.write(dest_address);
}
void TCPFlow::data_callback(const event_callback& callback) {
on_data_callback_ = callback;
}
void TCPFlow::buffering_callback(const event_callback& callback) {
on_buffering_callback_= callback;
}
void TCPFlow::process_packet(PDU& pdu) {
TCP* tcp = pdu.find_pdu<TCP>();
RawPDU* raw = pdu.find_pdu<RawPDU>();
// If we sent a packet with RST or FIN on, this flow is done
if (tcp) {
update_state(*tcp);
}
if (!tcp || !raw) {
return;
}
const uint32_t chunk_end = tcp->seq() + raw->payload_size();
// If the end of the chunk ends after our current sequence number, process it.
if (seq_compare(chunk_end, seq_number_) >= 0) {
bool added_some = false;
uint32_t seq = tcp->seq();
// If it starts before our sequence number, slice it
if (seq_compare(seq, seq_number_) < 0) {
const uint32_t diff = seq_number_ - seq;
raw->payload().erase(
raw->payload().begin(),
raw->payload().begin() + diff
);
seq = seq_number_;
}
// Store this payload
store_payload(seq, raw->payload());
// Keep looping while the fragments seq is lower or equal to our seq
buffered_payload_type::iterator iter = buffered_payload_.find(seq_number_);
while (iter != buffered_payload_.end() && seq_compare(iter->first, seq_number_) <= 0) {
// Does this fragment start before our sequence number?
if (seq_compare(iter->first, seq_number_) < 0) {
uint32_t fragment_end = iter->first + iter->second.size();
int comparison = seq_compare(fragment_end, seq_number_);
// Does it end after our sequence number?
if (comparison > 0) {
// Then slice it
payload_type& payload = iter->second;
payload.erase(
payload.begin(),
payload.begin() + (seq_number_ - iter->first)
);
store_payload(seq_number_, iter->second);
iter = erase_iterator(iter);
}
else {
// Otherwise, we've seen this part of the payload. Erase it.
iter = erase_iterator(iter);
}
}
else {
// They're equal. Add this payload.
payload_.insert(
payload_.end(),
iter->second.begin(),
iter->second.end()
);
seq_number_ += iter->second.size();
iter = erase_iterator(iter);
added_some = true;
// If we don't have any other payload, we're done
if (buffered_payload_.empty()) {
break;
}
}
}
if (added_some) {
if (on_data_callback_) {
on_data_callback_(*this);
}
}
else {
if (on_buffering_callback_) {
on_buffering_callback_(*this);
}
}
}
}
void TCPFlow::store_payload(uint32_t seq, const payload_type& payload) {
buffered_payload_type::iterator iter = buffered_payload_.find(seq);
// New segment, store it
if (iter == buffered_payload_.end()) {
buffered_payload_.insert(make_pair(seq, payload));
}
else if (iter->second.size() < payload.size()) {
// If we already have payload on this position but it's a shorter
// chunk than the new one, replace it
iter->second = payload;
}
}
TCPFlow::buffered_payload_type::iterator TCPFlow::erase_iterator(buffered_payload_type::iterator iter) {
buffered_payload_type::iterator output = iter;
++output;
buffered_payload_.erase(iter);
if (output == buffered_payload_.end()) {
output = buffered_payload_.begin();
}
return output;
}
void TCPFlow::update_state(const TCP& tcp) {
if ((tcp.flags() & TCP::FIN) != 0) {
state_ = FIN_SENT;
}
else if ((tcp.flags() & TCP::RST) != 0) {
state_ = RST_SENT;
}
else if (state_ == SYN_SENT && (tcp.flags() & TCP::ACK) != 0) {
state_ = ESTABLISHED;
seq_number_++;
}
else if (state_ == UNKNOWN && (tcp.flags() & TCP::SYN) != 0) {
state_ = SYN_SENT;
seq_number_ = tcp.seq();
}
}
bool TCPFlow::is_v6() const {
return is_v6_;
}
bool TCPFlow::is_finished() const {
return state_ == FIN_SENT || state_ == RST_SENT;
}
bool TCPFlow::packet_belongs(const PDU& packet) const {
if (is_v6()) {
const IPv6* ip = packet.find_pdu<IPv6>();
if (!ip || ip->dst_addr() != dst_addr_v6()) {
return false;
}
}
else {
const IP* ip = packet.find_pdu<IP>();
if (!ip || ip->dst_addr() != dst_addr_v4()) {
return false;
}
}
const TCP* tcp = packet.find_pdu<TCP>();
return tcp && tcp->dport() == dport();
}
IPv4Address TCPFlow::dst_addr_v4() const {
InputMemoryStream stream(dest_address_.data(), dest_address_.size());
return stream.read<IPv4Address>();
}
IPv6Address TCPFlow::dst_addr_v6() const {
InputMemoryStream stream(dest_address_.data(), dest_address_.size());
return stream.read<IPv6Address>();
}
uint16_t TCPFlow::dport() const {
return dest_port_;
}
const TCPFlow::payload_type& TCPFlow::payload() const {
return payload_;
}
TCPFlow::payload_type& TCPFlow::payload() {
return payload_;
}
void TCPFlow::state(State new_state) {
state_ = new_state;
}
TCPFlow::State TCPFlow::state() const {
return state_;
}
uint32_t TCPFlow::sequence_number() const {
return seq_number_;
}
// TCPStream
TCPStream::TCPStream(const PDU& packet)
: client_flow_(extract_client_flow(packet)),
server_flow_(extract_server_flow(packet)) {
}
TCPStream::TCPStream(const TCPFlow& client_flow, const TCPFlow& server_flow)
: client_flow_(client_flow), server_flow_(server_flow) {
}
void TCPStream::process_packet(PDU& packet) {
if (client_flow_.packet_belongs(packet)) {
client_flow_.process_packet(packet);
}
else if (server_flow_.packet_belongs(packet)) {
server_flow_.process_packet(packet);
}
}
TCPFlow& TCPStream::client_flow() {
return client_flow_;
}
const TCPFlow& TCPStream::client_flow() const {
return client_flow_;
}
TCPFlow& TCPStream::server_flow() {
return server_flow_;
}
const TCPFlow& TCPStream::server_flow() const {
return server_flow_;
}
void TCPStream::client_data_callback(const stream_callback& callback) {
on_client_data_callback_ = callback;
}
void TCPStream::server_data_callback(const stream_callback& callback) {
on_server_data_callback_ = callback;
}
void TCPStream::client_buffering_callback(const stream_callback& callback) {
on_client_buffering_callback_ = callback;
}
void TCPStream::server_buffering_callback(const stream_callback& callback) {
on_server_buffering_callback_ = callback;
}
TCPFlow TCPStream::extract_client_flow(const PDU& packet) {
const TCP* tcp = packet.find_pdu<TCP>();
if (!tcp) {
// TODO: define proper exception
throw runtime_error("No TCP");
}
if (const IP* ip = packet.find_pdu<IP>()) {
return TCPFlow(ip->dst_addr(), tcp->dport(), tcp->seq());
}
else if (const IPv6* ip = packet.find_pdu<IPv6>()) {
return TCPFlow(ip->dst_addr(), tcp->dport(), tcp->seq());
}
else {
// TODO: define proper exception
throw runtime_error("No valid layer 3");
}
}
TCPFlow TCPStream::extract_server_flow(const PDU& packet) {
const TCP* tcp = packet.find_pdu<TCP>();
if (!tcp) {
// TODO: define proper exception
throw runtime_error("No TCP");
}
if (const IP* ip = packet.find_pdu<IP>()) {
return TCPFlow(ip->src_addr(), tcp->sport(), tcp->ack_seq());
}
else if (const IPv6* ip = packet.find_pdu<IPv6>()) {
return TCPFlow(ip->src_addr(), tcp->sport(), tcp->ack_seq());
}
else {
// TODO: define proper exception
throw runtime_error("No valid layer 3");
}
}
void TCPStream::setup_flows_callbacks() {
using std::placeholders::_1;
client_flow_.data_callback(bind(&TCPStream::on_client_flow_data, this, _1));
server_flow_.data_callback(bind(&TCPStream::on_server_flow_data, this, _1));
client_flow_.buffering_callback(bind(&TCPStream::on_client_buffering, this, _1));
server_flow_.buffering_callback(bind(&TCPStream::on_server_buffering, this, _1));
}
void TCPStream::on_client_flow_data(const TCPFlow& flow) {
if (on_client_data_callback_) {
on_client_data_callback_(*this);
}
}
void TCPStream::on_server_flow_data(const TCPFlow& flow) {
if (on_server_data_callback_) {
on_server_data_callback_(*this);
}
}
void TCPStream::on_client_buffering(const TCPFlow& flow) {
if (on_client_buffering_callback_) {
on_client_buffering_callback_(*this);
}
}
void TCPStream::on_server_buffering(const TCPFlow& flow) {
if (on_server_buffering_callback_) {
on_server_buffering_callback_(*this);
}
}
// TCPStreamFollower
TCPStreamFollower::TCPStreamFollower()
: attach_to_flows_(false) {
}
void TCPStreamFollower::process_packet(PDU& packet) {
stream_id identifier = make_stream_id(packet);
streams_type::iterator iter = streams_.find(identifier);
bool process = true;
if (iter == streams_.end()) {
const TCP& tcp = packet.rfind_pdu<TCP>();
// Start tracking if they're either SYNs or they contain data (attach
// to an already running flow).
if (tcp.flags() == TCP::SYN || (attach_to_flows_ && tcp.find_pdu<RawPDU>() != 0)) {
iter = streams_.insert(make_pair(identifier, make_stream(packet))).first;
iter->second.setup_flows_callbacks();
if (tcp.flags() == TCP::SYN) {
// If it's a SYN, set the proper state
iter->second.client_flow().state(TCPFlow::SYN_SENT);
process = false;
}
else {
// Otherwise, assume the connection is established
iter->second.client_flow().state(TCPFlow::ESTABLISHED);
iter->second.server_flow().state(TCPFlow::ESTABLISHED);
}
}
else {
process = false;
}
}
// We'll process it if we had already seen this stream or if we just attached to
// it and it contains payload
if (process) {
iter->second.process_packet(packet);
}
}
void TCPStreamFollower::client_data_callback(const stream_callback& callback) {
on_client_data_callback_ = callback;
}
void TCPStreamFollower::server_data_callback(const stream_callback& callback) {
on_server_data_callback_ = callback;
}
void TCPStreamFollower::client_buffering_callback(const stream_callback& callback) {
on_client_buffering_callback_ = callback;
}
void TCPStreamFollower::server_buffering_callback(const stream_callback& callback) {
on_server_buffering_callback_ = callback;
}
TCPStream& TCPStreamFollower::find_stream(IPv4Address client_addr, uint16_t client_port,
IPv4Address server_addr, uint16_t server_port) {
stream_id identifier(serialize(client_addr), client_port,
serialize(server_addr), server_port);
streams_type::iterator iter = streams_.find(identifier);
if (iter == streams_.end()) {
// TODO: define proper exception
throw runtime_error("Stream not found");
}
else {
return iter->second;
}
}
TCPStreamFollower::stream_id TCPStreamFollower::make_stream_id(const PDU& packet) {
const TCP* tcp = packet.find_pdu<TCP>();
if (!tcp) {
// TODO: define proper exception
throw runtime_error("No TCP");
}
if (const IP* ip = packet.find_pdu<IP>()) {
return stream_id(serialize(ip->src_addr()), tcp->sport(),
serialize(ip->dst_addr()), tcp->dport());
}
else if (const IPv6* ip = packet.find_pdu<IPv6>()) {
return stream_id(serialize(ip->src_addr()), tcp->sport(),
serialize(ip->dst_addr()), tcp->dport());
}
else {
// TODO: define proper exception
throw runtime_error("No layer 3");
}
}
TCPStream TCPStreamFollower::make_stream(const PDU& packet) {
TCPStream stream(packet);
stream.client_data_callback(on_client_data_callback_);
stream.server_data_callback(on_server_data_callback_);
stream.client_buffering_callback(on_client_buffering_callback_);
stream.server_buffering_callback(on_server_buffering_callback_);
return stream;
}
TCPStreamFollower::address_type TCPStreamFollower::serialize(IPv4Address address) {
address_type addr;
OutputMemoryStream output(addr.data(), addr.size());
output.write(address);
return addr;
}
TCPStreamFollower::address_type TCPStreamFollower::serialize(const IPv6Address& address) {
address_type addr;
OutputMemoryStream output(addr.data(), addr.size());
output.write(address);
return addr;
}
// stream_id
TCPStreamFollower::stream_id::stream_id(const address_type& client_addr,
uint16_t client_port,
const address_type& server_addr,
uint16_t server_port)
: min_address(client_addr), max_address(server_addr), min_address_port(client_port),
max_address_port(server_port) {
if (min_address > max_address) {
swap(min_address, max_address);
swap(min_address_port, max_address_port);
}
}
bool TCPStreamFollower::stream_id::operator<(const stream_id& rhs) const {
return tie(min_address, min_address_port, max_address, max_address_port) <
tie(rhs.min_address, rhs.min_address_port, rhs.max_address, rhs.max_address_port);
}
} // TCPIP
} // Tins