(a simple Unit Test Framework for Embedded C)

[Documentation Copyright © 2007 Unity Project by Mike Karlesky, Mark VanderVoord, and Greg Williams.

This Documentation is Released Under a Creative Commons 3.0 Attribution Share-Alike License |

Unity is a unit test framework. Our goal has been to keep is small and functional. The core Unity test
framework is a single C and header file pair, which provide functions and macros to make testing
easier. Most of it is a variety of assertions which are meant to be placed in tests to verify that variables
and return values contain the information that you believe they should. There are some additional
methods for general test flow control.

We've developed Unity to be fairly cross-platform. It uses ANSI C for the library itself, and beautiful
cross-platform Ruby for all the optional add-on scripts. We've personally used Unity with GCC, IAR's
Embedded C Compiler, and MS Visual Studio. It shouldn't be too much work to get it to work with
something else.

When you download Unity, you're going to get some other goodies as well. Let's look at the root
directory for a hint as to what those goodies are:

e test — These are tests using Unity which actually test unity itself. How cool is that?
e src — This is where Unity, and some example helpers to expand Unity, live

e cxamples — This has examples of how to use Unity and it's scripts.

e docs — This has our wonderfully entertaining documentation (like this file)

e build — Just ignore this. Temporary build files get thrown here.

e auto — This contains a collection of Ruby scripts which are going to make using Unity less
painful

You're also going to see a makefile and a rakefile (plus a rakefile helper... which strangely enough just
helps the rakefile).

The makefile is a simple makefile which can be used to get the Unity tests going... it's also a good
example of a simple way of assembling your tests. It's currently written assuming you are using GNU
Make, but is simple enough that you could tweak it to use with something else.

The rakefile does the same thing, but using Rake. If you have Ruby and Rake installed you can use
Rake instead of Make. It's going to provide you with extra goodies like test summaries and the ability
to automagically discover your test functions (so you don't have to remember to call each one by hand).

How To Use Unity

We often run our Unit tests in a simulator. If it's not possible or inconvenient for you, you may also be
able to build them into an executable locally and run it. The biggest thing you are missing out on if you
do this is the ability to have your code and/or tests directly write to any arbitrary location in memory.
This is extremely useful when you want to read or write “registers”.

The Unit tests get built in little chunks. Each module you want to test is built with it's corresponding
test module, a test runner, and whatever other supporting modules are needed. This test is then run
before moving on to the next module. Unit Tests DO NOT end up in your final release (or even debug)
executable, because they are built separately.

If you are using the scripts in the auto directory, you get some extra niceties. First, you don't have to
write those TestRunner files. These are automatically generated for you. Second, you don't have to
search the results, a report will be generated for you.

Unity Test API

Running Tests

RUN_TEST (func) Each Test is run within the macro RUN_TEST.
This macro performs necessary setup before the
test is called and handles cleanup and result
tabulation afterwards.

Ignoring Tests

There are times when a test is incomplete or not valid for some reason. At these times,
TEST_IGNORE can be called. Control will immediately be returned to the caller of the test, and no
failures will be returned.

TEST_IGNORE() Ignore this test and return immediately

TEST_IGNORE_MESSAGE (message) Ignore this test and return immediately. Output a
message stating why the test was ignored.

Aborting Tests

There are times when a test will contain an infinite loop on error conditions, or there may be reason to
escape from the test early without executing the rest of the test. A pair of macros support this
functionality in Unity. The first (TEST_PROTECT) sets up the feature, and handles emergency abort
cases. TEST_ABORT can then be used at any time within the tests to return to the last
TEST_PROTECT call.

TEST_PROTECT() Setup and Catch macro
TEST_ABORT() Abort Test macro
Example:

main(Q)

{
if (TEST_PROTECT() == 0)

{
MyTest();

If MyTest calls TEST_ABORT, program control will immediately return to TEST_PROTECT with a
non-zero return value.

Unity Assertion Summary

Basic Validity Tests

TEST_ASSERT_TRUE Evaluates whatever code is in condition and fails
(condition) if it evaluates to false

TEST_ASSERT_FALSE Evaluates whatever code is in condition and fails
(condition) if it evaluates to true

TEST_ASSERT Another way of calling TEST_ASSERT_TRUE
(condition)

TEST_ASSERT_UNLESS Another way of calling TEST_ASSERT_FALSE
(condition)

TEST_FAIL This test is automatically marked as a failure. The
(message)

message is output stating why.

Numerical Assertions: Integers

TEST_ASSERT_EQUAL
(expected, actual)

Another way of calling
TEST_ASSERT_EQUAL_INT

TEST_ASSERT_EQUAL_INT
(expected, actual)

Compare two integers for equality and display
errors as signed integers. If the ints passed are
smaller, they will be cast to full size, so you can
just use this most of the time instead of using a
specific item like the next three.

TEST_ASSERT_EQUAL_INTS8
(expected, actual)

Compare two 8-bit integers for equality and
display errors as signed integers.

TEST_ASSERT_EQUAL_INT16
(expected, actual)

Compare two 16-bit integers for equality and
display errors as signed integers.

TEST_ASSERT_EQUAL_INT3?2
(expected, actual)

Compare two 32-bit integers for equality and
display errors as signed integers.

TEST_ASSERT_EQUAL_UINT
(expected, actual)

Compare two integers for equality and display
errors as unsigned integers. Like INT above, you
can use this instead of the specific versions in
most cases.

TEST_ASSERT_EQUAL_UINTS8
(expected, actual)

Compare two 8-bit integers for equality and
display errors as unsigned integers.

TEST_ASSERT_EQUAL_UINT16
(expected, actual)

Compare two 16-bit integers for equality and
display errors as unsigned integers.

TEST_ASSERT_EQUAL_UINT32
(expected, actual)

Compare two 32-bit integers for equality and
display errors as unsigned integers.

TEST_ASSERT_EQUAL_HEXS8
(expected, actual)

Compare two integers for equality and display
errors as an 8-bit hex value

TEST_ASSERT_EQUAL_HEX16
(expected, actual)

Compare two integers for equality and display
errors as an 16-bit hex value

TEST_ASSERT_EQUAL_HEX3?2
(expected, actual)

Compare two integers for equality and display
errors as an 32-bit hex value

TEST_ASSERT_EQUAL_HEX
(expected, actual)

Another way of calling
TEST_ASSERT_EQUAL_HEX32

All the TEST ASSERT EQUAL macros come in a few flavors. In addition to the basic one listed, you
can append MESSAGE to add an additional message string argument (the custom message will be
placed after the standard output) or add ARRAY to work with an array of those elements. The
number of elements to check is passed in as the third argument. You can even do

ARRAY MESSAGE and get both options.

Numerical Assertions: Integer Ranges

TEST_ASSERT_INT_WITHIN
(delta, expected, actual)

Asserts that the actual value is within plus or
minus delta of the expected value. Failures are
displayed as signed integers.

TEST_ASSERT_UINT_WITHIN
(delta, expected, actual)

Asserts that the actual value is within plus or
minus delta of the expected value. Failures are
displayed as signed integers.

TEST_ASSERT_HEX8_WITHIN
(delta, expected, actual)

Asserts that the actual value is within plus or
minus delta of the expected value. Failures are
displayed as 2 nibble hex.

TEST_ASSERT_HEX16_WITHIN
(delta, expected, actual)

Asserts that the actual value is within plus or
minus delta of the expected value. Failures are
displayed as 4 nibble hex.

TEST_ASSERT_HEX32_WITHIN
(delta, expected, actual)

Asserts that the actual value is within plus or
minus delta of the expected value. Failures are
displayed as 8 nibble hex.

Numerical Assertions: Bitwise

TEST_ASSERT_BITS
(mask, expected, actual)

Use an integer mask to specify which bits should
be compared between two other integers. High
bits in the mask are compared, low bits ignored.

TEST_ASSERT_BITS_HIGH
(mask, actual)

Use an integer mask to specify which bits should
be inspected to determine if they are all set high.
High bits in the mask are compared, low bits
ignored.

TEST_ASSERT_BITS_LOW
(mask, actual)

Use an integer mask to specify which bits should
be inspected to determine if they are all set low.
High bits in the mask are compared, low bits
ignored.

TE$T_ASSERT_BIT_HIGH
(bit, actual)

Test a single bit and verify that it is high. The bit
is specified 0-31 for a 32-bit integer.

TE$T_ASSERT_BIT_LOW
(bit, actual)

Test a single bit and verify that it is low. The bit is
specified 0-31 for a 32-bit integer.

Numerical Assertions: Floats

TEST_ASSERT_FLOAT_WITHIN
(delta, expected, actual)

Asserts that the actual value is within plus or
minus delta of the expected value.

TEST_ASSERT_EQUAL_FLOAT
(expected, actual)

Asserts that the actual value is within a couple of
significant bits of the expected value.

TEST_ASSERT_EQUAL_FLOAT_ARRAY
(expected, actual, num_elements)

Yes, floats get array handlers too

String Assertions

TEST_ASSERT_EQUAL_STRING
(expected, actual)

Compare two null-terminate strings. Fail if any
character is different or if the lengths are different.

TEST_ASSERT_EQUAL_STRING_MESSAGE
(expected, actual, message)

Compare two null-terminate strings. Fail if any
character is different or if the lengths are different.
Output a custom message on failure.

Pointer Assertions

Most pointer operations can be performed by simply using the integer comparisons above. However, a

couple of special cases are added for clarity.

TEST_ASSERT_NULL Fails if the pointer is not equal to NULL
(pointer)

TEST_ASSERT_NOT_NULL Fails if the pointer is equal to NULL
(pointer)

Memory Assertions (for all your other weird types)

TEST_ASSERT_EQUAL_MEMORY
(expected, actual, Ten)

Compare two blocks of memory. This is useful
for packed structs, buffers, etc... just keep in mind
that it's checking everything in that range... so if

your struct is unpacked, you might get false
failures.

TEST_ASSERT_EQUAL_MEMORY_MESSAGE
TEST_ASSERT_EQUAL_MEMORY_ARRAY

Yes, memory compares come in those convenient
variations too

Helper Scripts

generate_test_runner.rb

This script will allow you to specify any test file name in your project and will automatically create a
test runner (which includes “main”) to run that test. It searches your test file for void-returning
functions starting with “test”. It assumes all of these functions are tests and builds up a test suite for
you. For example, the following would be tests:

void testVerifyThatunityIsAwesomeAndwillMakeYourLifeEasier(void) {
ASSERT_TRUE(1);

void test_FunctionName_worksProperlyAndAlwaysReturns8(void) {
ASSERT_EQUAL (8, FunctionName());

You can run this script from the command line or make use of it through other Ruby scripts by
including the file and then instantiating the class. Let's look at the command line usage:

ruby generate_test_runner.rb test_file_being_tested name_of_runner

or you can automatically name the runner by just using

ruby generate_test_runner.rb test_file_being_tested

If you are using Ruby and Rake, there is a much better way to do all this. You can take advantage of
some of the extra features of this script, including the ability to push your own header files into your
test runners and the ability to get a list of all the header files included by a test (for easy test building).
This is demonstrated in the examples directory.

unity_test_summary.rb

This script will generate a summary of your test output for you. It tells you how many tests were run,
how many were ignore, and how many failed. It also gives you a listing of which tests specifically
were ignored and failed. It does this by searching results files that you pass to it. A great example of
this is also in the examples directory. There are intentional ignored and failing tests in this project in
order to demonstrate what these situations look like in a summary report.

Options

When you're compiling tests with Unity, you can optional include the following #defines to override
the default behaviors and customize your experience a little.

UNITY_INT WIDTH
Define this to something other than the default 32 if you're working on a system with larger or smaller
ints.

UNITY EXCLUDE FLOAT

Don't include the floating point support... useful for those smaller micros where you don't want to
include floating point libraries.

UNITY FLOAT PRECISION
This how close the floats need to be in order to be considered “equal”. It defaults to 0.00001f

UNITY_FLOAT TYPE
This defaults to float... but maybe you want double? Double double?

UNITY LINE TYPE

This defaults to an unsigned short... but if you have huge files (greater than 65535) you may need to
raise it. You could save a bit of memory if your files are all less than 255 and you set this to char.

UNITY_COUNTER TYPE

The internal counters which count the number of failures, tests, and ignores are by default unsigned
shorts... change it to something else as appropriate... just don't blame us when you write test 256 and
your unsigned char seems to give you weird results.

	How To Use Unity
	Unity Test API
	Running Tests
	Ignoring Tests
	Aborting Tests

	Unity Assertion Summary
	Basic Validity Tests
	Numerical Assertions: Integers
	Numerical Assertions: Integer Ranges
	Numerical Assertions: Bitwise
	Numerical Assertions: Floats
	String Assertions
	Pointer Assertions
	Memory Assertions (for all your other weird types)

	Helper Scripts
	generate_test_runner.rb
	unity_test_summary.rb

	Options

