
(a simple Unit Test Framework for Embedded C)

[This Documentation is Released Under a Creative Commons 3.0 Attribution Share-Alike License]

Unity is a unit test framework. Our goal has been to keep is small and functional. The core Unity test
framework is a single C and header file pair, which provide functions and macros to make testing
easier. Most of it is a variety of assertions which are meant to be placed in tests to verify that variables
and return values contain the information that you believe they should. There are some additional
methods for general test flow control.

We've developed Unity to be fairly cross-platform. It uses ANSI C for the library itself, and beautiful
cross-platform Ruby for all the optional add-on scripts. We've personally used Unity with GCC, IAR's
Embedded C Compiler, and MS Visual Studio. It shouldn't be too much work to get it to work with
something else.

When you download Unity, you're going to get some other goodies as well. Let's look at the root
directory for a hint as to what those goodies are:

● test – These are tests using Unity which actually test unity itself. How cool is that?

● src – This is where Unity, and some example helpers to expand Unity, live

● examples – This has examples of how to use Unity and it's scripts.

● docs – This has our wonderfully entertaining documentation (like this file)

● build – Just ignore this. Temporary build files get thrown here.

● auto – This contains a collection of Ruby scripts which are going to make using Unity less
painful

You're also going to see a makefile and a rakefile (plus a rakefile_helper... which strangely enough just
helps the rakefile).

The makefile is a simple makefile which can be used to get the Unity tests going... it's also a good
example of a simple way of assembling your tests. It's currently written assuming you are using GNU
Make, but is simple enough that you could tweak it to use with something else.

The rakefile does the same thing, but using rake. If you have Ruby and Rake installed you can use
Rake instead of Make. It's going to provide you with extra goodies like test summaries and the ability
to automagically discover your test functions (so you don't have to remember to call each one by hand).

How To Use Unity
We often run our Unit tests in a simulator. If it's not possible or inconvenient for you, you may also be
able to build them into an exe locally and run it. The biggest thing you are missing out on if you do
this is the ability to have your code and/or tests directly write to any arbitrary location in memory. This
is extremely useful when you want to read or write “registers”.

The Unit tests get built in little chunks. Each module you want to test is built with it's corresponding
test module, a test runner, and whatever other supporting modules are needed. This test is then run
before moving on to the next module. Unit Tests DO NOT end up in your final release (or even debug)
executable, because they are built separately.

If you are using the scripts in the auto directory, you get some extra niceties. First, you don't have to
write those TestRunner files. These are automatically generated for you. Second, you don't have to
search the results, a report will be generated for you.

Unity Test API

Running Tests
RUN_TEST(func) Each Test is run within the macro RUN_TEST.

This macro performs necessary setup before the
test is called and handles cleanup and result
tabulation afterwards.

TEST_WRAP(function) If the test functions call helper functions and those
helper functions have the ability to make
assertions, calls to those helpers should be
wrapped in a TEST_WRAP macro. This macro
aborts the test if the helper triggered a failure.

Ignoring Tests
There are times when a test is incomplete or not valid for some reason. At these times,
TEST_IGNORE can be called. Control will immediately be returned to the caller of the test, and no
failures will be returned.

TEST_IGNORE() Ignore this test and return immediately

TEST_IGNORE_MESSAGE (message) Ignore this test and return immediately. Output a
message stating why the test was ignored.

Aborting Tests
There are times when a test will contain an infinite loop on error conditions, or there may be reason to
escape from the test early without executing the rest of the test. A pair of macros support this
functionality in Unity. The first (TEST_PROTECT) sets up the feature, and handles emergency abort
cases. TEST_THROW can then be used at any time within the tests to return to the last
TEST_PROTECT call. This will require a longjmp library to exist for your platform.

TEST_PROTECT() Setup and Catch macro

TEST_THROW (message) Abort Test macro

Example:
main()

{

 if (TEST_PROTECT() == 0)

 {

 MyTest();

 }

}

If MyTest calls TEST_THROW, a failure with the message provided will be inserted, and program
control will immediately return to TEST_PROTECT with a non-zero return value.

Unity Assertion Summary

Basic Validity Tests
TEST_ASSERT_TRUE
(condition)

Evaluates whatever code is in condition and fails
if it evaluates to false

TEST_ASSERT_FALSE
(condition)

Evaluates whatever code is in condition and fails
if it evaluates to true

TEST_ASSERT
(condition)

Another way of calling TEST_ASSERT_TRUE

TEST_ASSERT_UNLESS
(condition)

Another way of calling TEST_ASSERT_FALSE

TEST_FAIL
(message)

This test is automatically marked as a failure. The
message is output stating why.

Numerical Assertions: Integers
TEST_ASSERT_EQUAL
(expected, actual)

Another way of calling
TEST_ASSERT_EQUAL_INT

TEST_ASSERT_EQUAL_INT
(expected, actual)

Compare two integers for equality and display
errors as signed integers.

TEST_ASSERT_EQUAL_UINT
(expected, actual)

Compare two integers for equality and display
errors as unsigned integers.

TEST_ASSERT_EQUAL_HEX8
(expected, actual)

Compare two integers for equality and display
errors as an 8-bit hex value

TEST_ASSERT_EQUAL_HEX16
(expected, actual)

Compare two integers for equality and display
errors as an 16-bit hex value

TEST_ASSERT_EQUAL_HEX32
(expected, actual)

Compare two integers for equality and display
errors as an 32-bit hex value

TEST_ASSERT_EQUAL_HEX
(expected, actual)

Another way of calling
TEST_ASSERT_EQUAL_HEX32

TEST_ASSERT_INT_WITHIN
(delta, expected, actual)

Asserts that the actual value is within plus or
minus delta of the expected value.

TEST_ASSERT_EQUAL_MESSAGE
(expected, actual, message)

Another way of calling
TEST_ASSERT_EQUAL_INT_MESSAGE

TEST_ASSERT_EQUAL_INT_MESSAGE
(expected, actual, message)

Compare two integers for equality and display
errors as signed integers. Outputs a custom
message on failure.

TEST_ASSERT_EQUAL_UINT_MESSAGE
(expected, actual, message)

Compare two integers for equality and display
errors as unsigned integers. Outputs a custom
message on failure.

TEST_ASSERT_EQUAL_HEX8_MESSAGE
(expected, actual, message)

Compare two integers for equality and display
errors as an 8-bit hex value. Outputs a custom
message on failure.

TEST_ASSERT_EQUAL_HEX16_MESSAGE
(expected, actual, message)

Compare two integers for equality and display
errors as an 16-bit hex value. Outputs a custom
message on failure.

TEST_ASSERT_EQUAL_HEX32_MESSAGE
(expected, actual, message)

Compare two integers for equality and display
errors as an 32-bit hex value. Outputs a custom
message on failure.

TEST_ASSERT_EQUAL_HEX_MESSAGE
(expected, actual, message)

Another way of calling
TEST_ASSERT_EQUAL_HEX32_MESSAGE

Numerical Assertions: Bitwise
TEST_ASSERT_BITS
(mask, expected, actual)

Use an integer mask to specify which bits should
be compared between two other integers. High
bits in the mask are compared, low bits ignored.

TEST_ASSERT_BITS_HIGH
(mask, actual)

Use an integer mask to specify which bits should
be inspected to determine if they are all set high.
High bits in the mask are compared, low bits
ignored.

TEST_ASSERT_BITS_LOW
(mask, actual)

Use an integer mask to specify which bits should
be inspected to determine if they are all set low.
High bits in the mask are compared, low bits
ignored.

TEST_ASSERT_BIT_HIGH
(bit, actual)

Test a single bit and verify that it is high. The bit
is specified 0-31 for a 32-bit integer.

TEST_ASSERT_BIT_LOW
(bit, actual)

Test a single bit and verify that it is low. The bit is
specified 0-31 for a 32-bit integer.

Numerical Assertions: Floats
TEST_ASSERT_FLOAT_WITHIN
(delta, expected, actual)

Asserts that the actual value is within plus or
minus delta of the expected value.

String Assertions
TEST_ASSERT_EQUAL_STRING
(expected, actual)

Compare two null-terminate strings. Fail if any
character is different or if the lengths are different.

TEST_ASSERT_EQUAL_STRING_MESSAGE
(expected, actual, message)

Compare two null-terminate strings. Fail if any
character is different or if the lengths are different.
Output a custom message on failure.

Pointer Assertions
Most pointer operations can be performed by simply using the integer comparisons above. However, a
couple of special cases are added for clarity.

TEST_ASSERT_NULL
(pointer)

Fails if the pointer is not equal to NULL

TEST_ASSERT_NOT_NULL
(pointer)

Fails if the pointer is equal to NULL

Helper Scripts

generate_test_runner.rb
This script will allow you to specify any test file name in your project and will automatically create a
test runner (which includes “main”) to run that test. It searches your test file for void-returning
functions starting with “test”. It assumes all of these functions are tests and builds up a test suite for
you. For example, the following would be tests:

void testVerifyThatUnityIsAwesomeAndWillMakeYourLifeEasier(void) {

 ASSERT_TRUE(1);

}

void test_FunctionName_WorksProperlyAndAlwaysReturns8(void) {

 ASSERT_EQUAL(8, FunctionName());

}

You can run this script from the command line or make use of it through other Ruby scripts by
including the file and then instantiating the class. Let's look at the command line usage:

ruby generate_test_runner.rb test_file_being_tested name_of_runner

or you can automatically name the runner by just using

ruby generate_test_runner.rb test_file_being_tested

If you are using Ruby and Rake, there is a much better way to do all this. You can take advantage of
some of the extra features of this script, including the ability to push your own header files into your
test runners and the ability to get a list of all the header files included by a test (for easy test building).
This is demonstrated in the examples directory.

unity_test_summary.rb
This script will generate a summary of your test output for you. It tells you how many tests were run,
how many were ignore, and how many failed. It also gives you a listing of which tests specifically
were ignored and failed. It does this by searching results files that you pass to it. A great example of
this is also in the examples directory.

	How To Use Unity
	Unity Test API
	Running Tests
	Ignoring Tests
	Aborting Tests

	Unity Assertion Summary
	Basic Validity Tests
	Numerical Assertions: Integers
	Numerical Assertions: Bitwise
	Numerical Assertions: Floats
	String Assertions
	Pointer Assertions

	Helper Scripts
	generate_test_runner.rb
	unity_test_summary.rb

